These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26765322)

  • 1. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging.
    Spagnol ST; Dahl KN
    PLoS One; 2016; 11(1):e0146244. PubMed ID: 26765322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active cytoskeletal force and chromatin condensation independently modulate intranuclear network fluctuations.
    Spagnol ST; Dahl KN
    Integr Biol (Camb); 2014 May; 6(5):523-31. PubMed ID: 24619297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes.
    Estandarte AK; Botchway S; Lynch C; Yusuf M; Robinson I
    Sci Rep; 2016 Aug; 6():31417. PubMed ID: 27526631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer.
    Murata S; Herman P; Lin HJ; Lakowicz JR
    Cytometry; 2000 Nov; 41(3):178-85. PubMed ID: 11042614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Fluorescence Lifetime Imaging (FLIM) to Measure Intracellular Environments in a Single Cell.
    Nakabayashi T; Awasthi K; Ohta N
    Adv Exp Med Biol; 2017; 1035():121-133. PubMed ID: 29080134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.
    Schmid VJ; Cremer M; Cremer T
    Methods; 2017 Jul; 123():33-46. PubMed ID: 28323041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization.
    Keeling MC; Flores LR; Dodhy AH; Murray ER; Gavara N
    Sci Rep; 2017 Jul; 7(1):5219. PubMed ID: 28701767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction: Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging.
    Spagnol ST; Dahl KN
    PLoS One; 2016; 11(4):e0154639. PubMed ID: 27111892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Cellular Cartography: Mapping the Local Determinants of Oligodendrocyte Transcription Factor 2 (OLIG2) Function in Live Cells Using Massively Parallel Fluorescence Correlation Spectroscopy Integrated with Fluorescence Lifetime Imaging Microscopy (mpFCS/FLIM).
    Oasa S; Krmpot AJ; Nikolić SN; Clayton AHA; Tsigelny IF; Changeux JP; Terenius L; Rigler R; Vukojević V
    Anal Chem; 2021 Sep; 93(35):12011-12021. PubMed ID: 34428029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence lifetime imaging of DAPI-stained nuclei as a novel diagnostic tool for the detection and classification of B-cell chronic lymphocytic leukemia.
    Yahav G; Hirshberg A; Salomon O; Amariglio N; Trakhtenbrot L; Fixler D
    Cytometry A; 2016 Jul; 89(7):644-52. PubMed ID: 27315046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin cytoskeleton differentially alters the dynamics of lamin A, HP1α and H2B core histone proteins to remodel chromatin condensation state in living cells.
    Toh KC; Ramdas NM; Shivashankar GV
    Integr Biol (Camb); 2015 Oct; 7(10):1309-17. PubMed ID: 26359759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status.
    Douma K; Megens RT; Reitsma S; Prinzen L; Slaaf DW; Van Zandvoort MA
    Microsc Res Tech; 2007 May; 70(5):467-75. PubMed ID: 17393531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing chromatin dynamics and nuclear organization during differentiation in Drosophila larval tissue.
    Thakar R; Csink AK
    J Cell Sci; 2005 Mar; 118(Pt 5):951-60. PubMed ID: 15731005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological microscopy: local mechanical properties from microrheology.
    Chen DT; Weeks ER; Crocker JC; Islam MF; Verma R; Gruber J; Levine AJ; Lubensky TC; Yodh AG
    Phys Rev Lett; 2003 Mar; 90(10):108301. PubMed ID: 12689039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of fluorescence lifetime imaging microscopy of DNA binding dyes to assess radiation-induced chromatin compaction changes.
    Abdollahi E; Taucher-Scholz G; Jakob B
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Texture analysis of fluorescence lifetime images of AT- and GC-rich regions in nuclei.
    Murata S; Herman P; Lakowicz JR
    J Histochem Cytochem; 2001 Nov; 49(11):1443-51. PubMed ID: 11668197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved fluorescence microscopy for quantitative Ca2+ imaging in living cells.
    Sagolla K; Löhmannsröben HG; Hille C
    Anal Bioanal Chem; 2013 Oct; 405(26):8525-37. PubMed ID: 23975087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probe-free optical chromatin deformation and measurement of differential mechanical properties in the nucleus.
    Seelbinder B; Wagner S; Jain M; Erben E; Klykov S; Stoev ID; Krishnaswamy VR; Kreysing M
    Elife; 2024 Jan; 13():. PubMed ID: 38214505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of nuclear structure induced by increasing temperatures.
    Vergani L; Mascetti G; Nicolini C
    J Biomol Struct Dyn; 2001 Feb; 18(4):535-44. PubMed ID: 11245249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.