BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 26765508)

  • 21. Assessment of bioaccumulation of heavy metal by Pteris vittata L. growing in the vicinity of fly ash.
    Kumari A; Lal B; Pakade YB; Chand P
    Int J Phytoremediation; 2011 Sep; 13(8):779-87. PubMed ID: 21972518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals.
    Cameselle C; Gouveia S; Urréjola S
    Chemosphere; 2019 Aug; 229():481-488. PubMed ID: 31091489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monosilicic acid potential in phytoremediation of the contaminated areas.
    Ji X; Liu S; Huang J; Bocharnikova E; Matichenkov V
    Chemosphere; 2016 Aug; 157():132-6. PubMed ID: 27213242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation.
    Usharani B; Vasudevan N
    Arch Environ Occup Health; 2016; 71(2):102-10. PubMed ID: 25454352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination.
    Sun L; Liao X; Yan X; Zhu G; Ma D
    Environ Sci Pollut Res Int; 2014 Nov; 21(21):12494-504. PubMed ID: 24946706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].
    Yin X; Chen JJ; Cai WM
    Huan Jing Ke Xue; 2014 Aug; 35(8):3096-101. PubMed ID: 25338385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.
    Antonkiewicz J; Para A
    Int J Phytoremediation; 2016; 18(3):245-50. PubMed ID: 26280197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential evaluation of different intercropping remediation modes based on remediation efficiency and economic benefits - a case study of arsenic-contaminated soil.
    Yan Y; Yang J; Guo Y; Yang J; Wan X; Zhao C; Guo J; Chen T
    Int J Phytoremediation; 2022; 24(1):25-33. PubMed ID: 33998931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China.
    Guo D; Fan Z; Lu S; Ma Y; Nie X; Tong F; Peng X
    Sci Rep; 2019 Feb; 9(1):1947. PubMed ID: 30760787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmentally friendly remediation of lead/cadmium co-contaminated loess soil in northwestern China using a humificated straw solution.
    Fan C; Zhang Y
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25243-25254. PubMed ID: 29943126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems.
    Luo J; Qi S; Peng L; Xie X
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):321-5. PubMed ID: 25543544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remediation of lead and cadmium-contaminated soils.
    Salama AK; Osman KA; Gouda NA
    Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.
    Zhou M; Wang H; Zhu S; Liu Y; Xu J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16907-13. PubMed ID: 26109225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic and heavy metal accumulation by Pteris vittata L. and P. umbrosa R. Br.
    Koller CE; Patrick JW; Rose RJ; Offler CE; MacFarlane GR
    Bull Environ Contam Toxicol; 2008 Feb; 80(2):128-33. PubMed ID: 18183339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic.
    Shelmerdine PA; Black CR; McGrath SP; Young SD
    Environ Pollut; 2009 May; 157(5):1589-96. PubMed ID: 19171413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoremediation and absorption isotherms of heavy metal ions by Convolvulus tricolor (CTC).
    Valizadeh R; Mahdavian L
    Int J Phytoremediation; 2016; 18(4):329-36. PubMed ID: 26458024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using Calcination Remediation to Stabilize Heavy Metals and Simultaneously Remove Polycyclic Aromatic Hydrocarbons in Soil.
    Wang P; Hu X; He Q; Waigi MG; Wang J; Ling W
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30104500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption.
    Zehra A; Sahito ZA; Tong W; Tang L; Hamid Y; Khan MB; Ali Z; Naqvi B; Yang X
    J Environ Sci (China); 2020 Jan; 87():24-38. PubMed ID: 31791497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From classic methodologies to application of nanomaterials for soil remediation: an integrated view of methods for decontamination of toxic metal(oid)s.
    Souza LRR; Pomarolli LC; da Veiga MAMS
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):10205-10227. PubMed ID: 32064582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L.
    Yan X; Zhang M; Liao X; Tu S
    Chemosphere; 2012 Jun; 88(2):240-4. PubMed ID: 22463947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.