These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26765524)

  • 1. High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process.
    Amarit R; Kopwitthaya A; Pongsoon P; Jarujareet U; Chaitavon K; Porntheeraphat S; Sumriddetchkajorn S; Koanantakool T
    PLoS One; 2016; 11(1):e0146414. PubMed ID: 26765524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control.
    Karunakaran B; Tharion J; Dhawangale AR; Paul D; Mukherji S
    J Biomed Opt; 2018 Feb; 23(2):1-14. PubMed ID: 29453846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ retrieval and correction of aberrations in moldless lenses using Fourier ptychography.
    Kamal T; Yang L; Lee WM
    Opt Express; 2018 Feb; 26(3):2708-2719. PubMed ID: 29401807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.
    Zhang Y; Wu Y; Zhang Y; Ozcan A
    Sci Rep; 2016 Jun; 6():27811. PubMed ID: 27283459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution cost-effective compact portable inverted light microscope.
    Purwar P; Han S; Lee Y; Saha B; Sandhan T; Lee J
    J Microsc; 2019 Mar; 273(3):199-209. PubMed ID: 30561003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabricating low cost and high performance elastomer lenses using hanging droplets.
    Lee WM; Upadhya A; Reece PJ; Phan TG
    Biomed Opt Express; 2014 May; 5(5):1626-35. PubMed ID: 24877020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost mobile phone microscopy with a reversed mobile phone camera lens.
    Switz NA; D'Ambrosio MV; Fletcher DA
    PLoS One; 2014; 9(5):e95330. PubMed ID: 24854188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy.
    Chao W; Kim J; Rekawa S; Fischer P; Anderson EH
    Opt Express; 2009 Sep; 17(20):17669-77. PubMed ID: 19907552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lab-on-phone instrument with varifocal microscope via a liquid-actuated aspheric lens (LAL).
    Fuh YK; Lai ZH; Kau LH; Huang HJ
    PLoS One; 2017; 12(6):e0179389. PubMed ID: 28650971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonmechanical zoom system through pressure-controlled tunable fluidic lenses.
    Savidis N; Peyman G; Peyghambarian N; Schwiegerling J
    Appl Opt; 2013 Apr; 52(12):2858-65. PubMed ID: 23669698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging visible light using anisotropic metamaterial slab lens.
    Yao J; Tsai KT; Wang Y; Liu Z; Bartal G; Wang YL; Zhang X
    Opt Express; 2009 Dec; 17(25):22380-5. PubMed ID: 20052161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a low-cost compact array microscopy platform for detection of tuberculosis.
    McCall B; Pierce M; Graviss EA; Richards-Kortum R; Tkaczyk T
    Tuberculosis (Edinb); 2011 Dec; 91 Suppl 1():S54-60. PubMed ID: 22079590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic.
    Hung KY; Fan CC; Tseng FG; Chen YK
    Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery.
    Park JH; Yoon YK; Choi SO; Prausnitz MR; Allen MG
    IEEE Trans Biomed Eng; 2007 May; 54(5):903-13. PubMed ID: 17518288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal diffusivity imaging with the thermal lens microscope.
    Dada OO; Feist PE; Dovichi NJ
    Appl Opt; 2011 Dec; 50(34):6336-42. PubMed ID: 22192984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology.
    Xie D; Zhang H; Shu X; Xiao J
    Opt Express; 2012 Jul; 20(14):15186-95. PubMed ID: 22772217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oversampled triangulation of AWARE-10 monocentric ball lens using an auto-stigmatic microscope.
    Son HS; Marks DL; Brady DJ; Kim J
    Opt Express; 2013 Sep; 21(19):22206-14. PubMed ID: 24104112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles.
    Vlad A; Huynen I; Melinte S
    Nanotechnology; 2012 Jul; 23(28):285708. PubMed ID: 22728662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moldless Printing of Silicone Lenses With Embedded Nanostructured Optical Filters.
    Mariani S; Robbiano V; Iglio R; La Mattina AA; Nadimi P; Wang J; Kim B; Kumeria T; Sailor MJ; Barillaro G
    Adv Funct Mater; 2020 Jan; 30(4):. PubMed ID: 32377177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed transport-of-intensity phase microscopy with an electrically tunable lens.
    Zuo C; Chen Q; Qu W; Asundi A
    Opt Express; 2013 Oct; 21(20):24060-75. PubMed ID: 24104315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.