These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 2676598)
41. Thiamin-binding proteins. Itokawa Y; Kimura M; Nishino K Ann N Y Acad Sci; 1982; 378():327-36. PubMed ID: 7044227 [No Abstract] [Full Text] [Related]
42. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin. Hicks GR; Rayle DL; Jones AM; Lomax TL Proc Natl Acad Sci U S A; 1989 Jul; 86(13):4948-52. PubMed ID: 11537412 [TBL] [Abstract][Full Text] [Related]
43. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes. Gibbs EM; Hosang M; Reber BF; Semenza G; Diedrich DF Biochim Biophys Acta; 1982 Jun; 688(2):547-56. PubMed ID: 7201853 [TBL] [Abstract][Full Text] [Related]
44. Thiamine-binding activity of Saccharomyces cerevisiae plasma membrane. Nishimura H; Nosaka K; Sempuku K; Iwashima A Experientia; 1986 Jun; 42(6):607-8. PubMed ID: 3522266 [TBL] [Abstract][Full Text] [Related]
45. Thiamin-binding protein from sunflower seeds. Watanabe K; Chikushi K; Adachi T; Shimizu M; Yoshida T; Mitsunaga T J Nutr Sci Vitaminol (Tokyo); 1998 Oct; 44(5):665-72. PubMed ID: 9919486 [TBL] [Abstract][Full Text] [Related]
46. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 2. Transport studies, photoaffinity labeling, and identification of the membrane carrier protein for methotrexate from murine L1210 cells. Price EM; Freisheim JH Biochemistry; 1987 Jul; 26(15):4757-63. PubMed ID: 3663624 [TBL] [Abstract][Full Text] [Related]
47. Photoaffinity labeling of rat pancreatic cholecystokinin type A receptor antagonist binding sites demonstrates the presence of a truncated cholecystokinin type A receptor. Poirot SS; Escrieut C; Dufresne M; Martinez J; Bouisson M; Vaysse N; Fourmy D Mol Pharmacol; 1994 Apr; 45(4):599-607. PubMed ID: 8183238 [TBL] [Abstract][Full Text] [Related]
48. Target size analysis of the peptide/H(+)-symporter in kidney brush-border membranes. Boll M; Daniel H Biochim Biophys Acta; 1995 Feb; 1233(2):145-52. PubMed ID: 7865539 [TBL] [Abstract][Full Text] [Related]
49. Azidobenzamido-008, a new photosensitive substrate for the 'multispecific bile acid transporter' of hepatocytes: evidence for a common transport system for bile acids and cyclosomatostatins in basolateral membranes. Ziegler K; Frimmer M; Kessler H; Haupt A Biochim Biophys Acta; 1988 Nov; 945(2):263-72. PubMed ID: 2903768 [TBL] [Abstract][Full Text] [Related]
50. Photoaffinity labeling of mitochondrial proteins with 2-azido [32P]palmitoyl CoA. Woldegiorgis G; Lawrence J; Ruoho A; Duff T; Shrago E FEBS Lett; 1995 May; 364(2):143-6. PubMed ID: 7750558 [TBL] [Abstract][Full Text] [Related]
51. Photoaffinity labeling by [3H]-N5-methyl-N5-isobutylamiloride of proteins which cofractionate with Na+/H+ antiport activity. Wu JS; Lever JE Biochemistry; 1989 Apr; 28(7):2980-4. PubMed ID: 2545241 [TBL] [Abstract][Full Text] [Related]
52. Glucose transporters in chromaffin cells: subcellular distribution and characterization. Delicado EG; Torres M; Miras-Portugal MT FEBS Lett; 1988 Feb; 229(1):35-9. PubMed ID: 3345837 [TBL] [Abstract][Full Text] [Related]
53. 3'-Isothiocyanatobenzamido[3H]cholate, a new affinity label for hepatocellular membrane proteins responsible for the uptake of both bile acids and phalloidin. Ziegler K; Frimmer M; Müllner S; Fasold H Biochim Biophys Acta; 1984 Jun; 773(1):11-22. PubMed ID: 6329277 [TBL] [Abstract][Full Text] [Related]
54. Photoaffinity labelling of nucleoside-transport proteins in plasma membranes isolated from rat and guinea-pig liver. Wu JS; Young JD Biochem J; 1984 Jun; 220(2):499-506. PubMed ID: 6743283 [TBL] [Abstract][Full Text] [Related]
55. Thiamin transporters in yeast. Iwashima A; Nosaka K; Nishimura H; Enjo F Methods Enzymol; 1997; 279():109-17. PubMed ID: 9211263 [No Abstract] [Full Text] [Related]
56. A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae. Nishimura H; Kawasaki Y; Nosaka K; Kaneko Y; Iwashima A J Bacteriol; 1991 Apr; 173(8):2716-9. PubMed ID: 1849514 [TBL] [Abstract][Full Text] [Related]
57. D-Glucose-sensitive and -insensitive cytochalasin B binding proteins from microvillous plasma membranes of human placenta. Identification of the D-glucose transporter. Ingermann RL; Bissonnette JM; Koch PL Biochim Biophys Acta; 1983 Apr; 730(1):57-63. PubMed ID: 6681985 [TBL] [Abstract][Full Text] [Related]
58. Possible functional roles of carboxyl and histidine residues in a soluble thiamine-binding protein of Saccharomyces cerevisiae. Nishimura H; Sempuku K; Iwashima A Biochim Biophys Acta; 1981 May; 668(3):333-8. PubMed ID: 7016195 [TBL] [Abstract][Full Text] [Related]
59. Preparation of an affinity chromatography matrix for the selective purification of the dopamine D2 receptor from bovine striatal membranes. Clagett-Dame M; Schoenleber R; Chung C; McKelvy JF Biochim Biophys Acta; 1989 Nov; 986(2):271-80. PubMed ID: 2531613 [TBL] [Abstract][Full Text] [Related]
60. Functional production and reconstitution of the human equilibrative nucleoside transporter (hENT1) in Saccharomyces cerevisiae. Interaction of inhibitors of nucleoside transport with recombinant hENT1 and a glycosylation-defective derivative (hENT1/N48Q). Vickers MF; Mani RS; Sundaram M; Hogue DL; Young JD; Baldwin SA; Cass CE Biochem J; 1999 Apr; 339 ( Pt 1)(Pt 1):21-32. PubMed ID: 10085223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]