These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26766024)

  • 1. Effect of arsenate As (V) on the biomarkers of Myriophyllum alterniflorum in oligotrophic and eutrophic conditions.
    Krayem M; Deluchat V; Rabiet M; Cleries K; Lenain JF; Saad Z; Kazpard V; Labrousse P
    Chemosphere; 2016 Mar; 147():131-7. PubMed ID: 26766024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effect of copper and hydrodynamic conditions on Myriophyllum alterniflorum biomarkers.
    Krayem M; Deluchat V; Hourdin P; Fondanèche P; Lecavelier Des Etangs F; Kazpard V; Moesch C; Labrousse P
    Chemosphere; 2018 May; 199():427-434. PubMed ID: 29453069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are Myriophyllum alterniflorum biomarker responses to arsenic stress differentially affected by hydrodynamic conditions?
    Krayem M; Deluchat V; Hourdin P; Labrousse P
    Chemosphere; 2019 Jun; 225():497-506. PubMed ID: 30897473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption and translocation of copper and arsenic in an aquatic macrophyte Myriophyllum alterniflorum DC. in oligotrophic and eutrophic conditions.
    Krayem M; Baydoun M; Deluchat V; Lenain JF; Kazpard V; Labrousse P
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11129-11136. PubMed ID: 26916264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are cysteine, glutathione and phytochelatins responses of Myriophyllum alterniflorum to copper and arsenic stress affected by trophic conditions?
    Krayem M; Pinault E; Deluchat V; Labrousse P
    Biometals; 2022 Aug; 35(4):729-739. PubMed ID: 35639269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.
    Delmail D; Labrousse P; Hourdin P; Larcher L; Moesch C; Botineau M
    Int J Phytoremediation; 2013; 15(7):647-62. PubMed ID: 23819265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing.
    Knauer K; Mohr S; Feiler U
    Environ Sci Pollut Res Int; 2008 Jun; 15(4):322-31. PubMed ID: 18491155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of metal/metalloid occurrence in rivers with their accumulation in macrophyte case study with Myriophyllum alterniflorum.
    Baydoun M; Da Silva A; Decou R; Krayem M; Hourdin P; Cleries K; Fondanèche P; Hak T; Deluchat V
    Environ Monit Assess; 2020 May; 192(6):337. PubMed ID: 32383005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure.
    Ngayila N; Basly JP; Lejeune AH; Botineau M; Baudu M
    Sci Total Environ; 2007 Feb; 373(2-3):564-71. PubMed ID: 17217998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative in vitro/in situ approaches to three biomarker responses of Myriophyllum alterniflorum exposed to metal stress.
    Decou R; Bigot S; Hourdin P; Delmail D; Labrousse P
    Chemosphere; 2019 May; 222():29-37. PubMed ID: 30685657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Cadmium Scavenging Potential of Canna indica L.
    Solanki P; Narayan M; Rabha AK; Srivastava RK
    Bull Environ Contam Toxicol; 2018 Oct; 101(4):446-450. PubMed ID: 30116850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sucrose modifies growth and physiology in axenically grown Myriophyllum spicatum with potential effects on the response to pollutants.
    Nuttens A; Gross EM
    Environ Toxicol Chem; 2017 Apr; 36(4):969-975. PubMed ID: 27597637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Ellis DA; Mabury SA; Muir DC; Solomon KR
    Aquat Toxicol; 2002 Dec; 61(3-4):251-73. PubMed ID: 12359395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions.
    Hanson ML; Sibley PK; Ellis DA; Fineberg NA; Mabury SA; Solomon KR; Muir DC
    Aquat Toxicol; 2002 Mar; 56(4):241-55. PubMed ID: 11856574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms.
    Wieczorek MV; Bakanov N; Lagadic L; Bruns E; Schulz R
    Environ Toxicol Chem; 2017 Apr; 36(4):1090-1100. PubMed ID: 27696510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus deficiency modifies As translocation in the halophyte plant species Atriplex atacamensis.
    Vromman D; Martínez JP; Lutts S
    Ecotoxicol Environ Saf; 2017 May; 139():344-351. PubMed ID: 28187398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water-sediment system as an additional test in risk assessment of herbicides.
    Tunić T; Knežević V; Kerkez Đ; Tubić A; Šunjka D; Lazić S; Brkić D; Teodorović I
    Environ Toxicol Chem; 2015 Sep; 34(9):2104-15. PubMed ID: 25943248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of toxicants with different modes of action on Myriophyllum spicatum in test systems with varying complexity.
    Mohr S; Schott J; Maletzki D; Hünken A
    Ecotoxicol Environ Saf; 2013 Nov; 97():32-9. PubMed ID: 23928028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myriophyllum aquaticum versus Lemna minor: sensitivity and recovery potential after exposure to atrazine.
    Teodorović I; Knežević V; Tunić T; Cučak M; Lečić JN; Leovac A; Tumbas II
    Environ Toxicol Chem; 2012 Feb; 31(2):417-26. PubMed ID: 22095561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.
    Costa MB; Tavares FV; Martinez CB; Colares IG; Martins CMG
    Ecotoxicol Environ Saf; 2018 Jul; 155():117-124. PubMed ID: 29510306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.