These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26766210)

  • 41. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition.
    Li X; Colombo L; Ruoff RS
    Adv Mater; 2016 Aug; 28(29):6247-52. PubMed ID: 26991960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substrate considerations for graphene synthesis on thin copper films.
    Howsare CA; Weng X; Bojan V; Snyder D; Robinson JA
    Nanotechnology; 2012 Apr; 23(13):135601. PubMed ID: 22418897
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.
    Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D
    ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How good can CVD-grown monolayer graphene be?
    Chen B; Huang H; Ma X; Huang L; Zhang Z; Peng LM
    Nanoscale; 2014 Dec; 6(24):15255-61. PubMed ID: 25381813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective graphene formation on copper twin crystals.
    Hayashi K; Sato S; Ikeda M; Kaneta C; Yokoyama N
    J Am Chem Soc; 2012 Aug; 134(30):12492-8. PubMed ID: 22780847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High Quality Graphene Thin Films Synthesized by Glow Discharge Method in A Chemical Vapor Deposition System Using Solid Carbon Source.
    Wang L; Sun J; Guo W; Dong Y; Xie Y; Xiong F; Du Z; Li L; Deng J; Xu C
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32357507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controllable Growth of Graphene on Liquid Surfaces.
    Liu J; Fu L
    Adv Mater; 2019 Mar; 31(9):e1800690. PubMed ID: 30536644
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical Vapor Deposited Few-Layer Graphene as an Electron Field Emitter.
    Behural SK; Nayak S; Yang Q; Hirose A; Janil O
    J Nanosci Nanotechnol; 2016 Jan; 16(1):287-95. PubMed ID: 27398456
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications.
    Vijayaraghavan RK; Gaman C; Jose B; McCoy AP; Cafolla T; McNally PJ; Daniels S
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4878-86. PubMed ID: 26808203
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling the number of layers in graphene using the growth pressure.
    Cho JH; Na SR; Park S; Akinwande D; Liechti KM; Cullinan MA
    Nanotechnology; 2019 Jun; 30(23):235602. PubMed ID: 30780133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Continuous graphene films synthesized at low temperatures by introducing coronene as nucleation seeds.
    Wu T; Ding G; Shen H; Wang H; Sun L; Zhu Y; Jiang D; Xie X
    Nanoscale; 2013 Jun; 5(12):5456-61. PubMed ID: 23666147
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective area oxidation of copper derived from chemical vapor deposited graphene microstructure.
    Luo B; Yang S; Yuan A; Zhang B; Li D; Bøggild P; Booth TJ
    Nanotechnology; 2020 Nov; 31(48):485603. PubMed ID: 32936786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.
    Choi DS; Kim KS; Kim H; Kim Y; Kim T; Rhy SH; Yang CM; Yoon DH; Yang WS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19574-8. PubMed ID: 25386721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films.
    Cho JH; Gorman JJ; Na SR; Cullinan M
    Carbon N Y; 2017 May; 115():441-448. PubMed ID: 28669999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circular Graphene Platelets with Grain Size and Orientation Gradients Grown by Chemical Vapor Deposition.
    Xin X; Fei Z; Ma T; Chen L; Chen ML; Xu C; Qian X; Sun DM; Ma XL; Cheng HM; Ren W
    Adv Mater; 2017 Apr; 29(16):. PubMed ID: 28240393
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene.
    Choi JK; Kwak J; Park SD; Yun HD; Kim SY; Jung M; Kim SY; Park K; Kang S; Kim SD; Park DY; Lee DS; Hong SK; Shin HJ; Kwon SY
    ACS Nano; 2015 Jan; 9(1):679-86. PubMed ID: 25494828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of Nitrogen-Doped Graphene on Copper Nanowires for Efficient Thermal Conductivity and Stability by Using Conventional Thermal Chemical Vapor Deposition.
    Park M; Ahn SK; Hwang S; Park S; Kim S; Jeon M
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31284632
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The crystal orientation relation and macroscopic surface roughness in hetero-epitaxial graphene grown on Cu/mica.
    Qi JL; Nagashio K; Nishimura T; Toriumi A
    Nanotechnology; 2014 May; 25(18):185602. PubMed ID: 24739680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strain-Driven Faceting of Graphene-Catalyst Interfaces.
    Surana M; Ananthakrishnan G; Poss MM; Yaacoub JJ; Zhang K; Ahmed T; Admal NC; Pochet P; Johnson HT; Tawfick S
    Nano Lett; 2023 Mar; 23(5):1659-1665. PubMed ID: 36745111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.