BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 26766326)

  • 1. Dynamic recrystallization behavior of a biomedical Ti-13Nb-13Zr alloy.
    Bobbili R; Madhu V
    J Mech Behav Biomed Mater; 2016 Jun; 59():146-155. PubMed ID: 26766326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical response and microstructural evolution of Ti-13Zr-13Nb biomedical alloy under high strain rate load.
    Chen TH; Lin SY
    Technol Health Care; 2015; 24 Suppl 1():S171-7. PubMed ID: 26409553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy.
    Park CH; Lee CS; Kim YJ; Jang JH; Suh JY; Park JW
    Clin Oral Implants Res; 2011 Jul; 22(7):735-742. PubMed ID: 21121961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tribological and corrosion behaviors of warm-and hot-rolled Ti-13Nb-13Zr alloys in simulated body fluid conditions.
    Lee T; Mathew E; Rajaraman S; Manivasagam G; Singh AK; Lee CS
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):207-12. PubMed ID: 26491322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications.
    Hu H; Zhang L; He Z; Jiang Y; Tan J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():279-287. PubMed ID: 30813028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation.
    Michalska J; Sowa M; Piotrowska M; Widziołek M; Tylko G; Dercz G; Socha RP; Osyczka AM; Simka W
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109957. PubMed ID: 31500028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection.
    Aguilera-Correa JJ; Conde A; Arenas MA; de-Damborenea JJ; Marin M; Doadrio AL; Esteban J
    Biomed Mater; 2017 Aug; 12(4):045022. PubMed ID: 28799523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo study of stainless steel and Ti-13Nb-13Zr bone plates in a sheep model.
    Seligson D; Mehta S; Mishra AK; FitzGerald TJ; Castleman DW; James AH; Voor MJ; Been J; Nawab A
    Clin Orthop Relat Res; 1997 Oct; (343):213-23. PubMed ID: 9345227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a low elastic modulus and antibacterial Ti-13Nb-13Zr-5Cu titanium alloy by microstructure controlling.
    Shi A; Cai D; Hu J; Zhao X; Qin G; Han Y; Zhang E
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112116. PubMed ID: 34082933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High recoverable strain tailoring by Zr adjustment of sintered Ti-13Nb-(0-6)Zr biomedical alloys.
    Wu J; Li H; Yuan B; Gao Y
    J Mech Behav Biomed Mater; 2017 Nov; 75():574-580. PubMed ID: 28863399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response.
    Mello DCR; de Oliveira JR; Cairo CAA; Ramos LSB; Vegian MRDC; de Vasconcellos LGO; de Oliveira FE; de Oliveira LD; de Vasconcellos LMR
    J Mater Sci Mater Med; 2019 Sep; 30(9):108. PubMed ID: 31535222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjoint corrosion and wear in titanium alloys.
    Khan MA; Williams RL; Williams DF
    Biomaterials; 1999 Apr; 20(8):765-72. PubMed ID: 10353659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation into the hot workability of the as-extruded WE43 magnesium alloy using processing map.
    Wang L; Fang G; Leeflang S; Duszczyk J; Zhou J
    J Mech Behav Biomed Mater; 2014 Apr; 32():270-278. PubMed ID: 24508713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys.
    Lin CW; Ju CP; Chern Lin JH
    Biomaterials; 2005 Jun; 26(16):2899-907. PubMed ID: 15603785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured Ti-13Nb-13Zr alloy for implant application-material scientific, technological, and biological aspects.
    Klinge L; Kluy L; Spiegel C; Siemers C; Groche P; Coraça-Huber D
    Front Bioeng Biotechnol; 2023; 11():1255947. PubMed ID: 37691899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot Deformation Behavior Considering Strain Effects and Recrystallization Mechanism of an Al-Zn-Mg-Cu Alloy.
    Luo L; Liu Z; Bai S; Zhao J; Zeng D; Wang J; Cao J; Hu Y
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and Experimental Study of Dynamical Recrystallization Kinetics of TB8 Titanium Alloys.
    Zhang W; Yang Q; Tan Y; Ma M; Xiang S; Zhao F
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33028006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty.
    Davidson JA; Mishra AK; Kovacs P; Poggie RA
    Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocomposite hydroxyapatite formation on a Ti-13Nb-13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition.
    Baker MA; Assis SL; Higa OZ; Costa I
    Acta Biomater; 2009 Jan; 5(1):63-75. PubMed ID: 18815081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive Model and Recrystallization Mechanism of Mg-8.7Gd-4.18Y-0.42Zr Magnesium Alloy during Hot Deformation.
    Zhang L; Wu X; Zhang X; Yang X; Li Y
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.