These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 267664)
41. A bacteriological evaluation of laminar-flow systems for orthopaedic surgery. Whyte W; Shaw BH; Barnes R J Hyg (Lond); 1973 Sep; 71(3):559-64. PubMed ID: 4518355 [TBL] [Abstract][Full Text] [Related]
42. Pilot study of directional airflow and containment of airborne particles in the size of Mycobacterium tuberculosis in an operating room. Olmsted RN Am J Infect Control; 2008 May; 36(4):260-7. PubMed ID: 18455046 [TBL] [Abstract][Full Text] [Related]
43. Factors contributing to airborne particle dispersal in the operating room. Noguchi C; Koseki H; Horiuchi H; Yonekura A; Tomita M; Higuchi T; Sunagawa S; Osaki M BMC Surg; 2017 Jul; 17(1):78. PubMed ID: 28683726 [TBL] [Abstract][Full Text] [Related]
44. Single-use surgical clothing system for reduction of airborne bacteria in the operating room. Tammelin A; Ljungqvist B; Reinmüller B J Hosp Infect; 2013 Jul; 84(3):245-7. PubMed ID: 23694760 [TBL] [Abstract][Full Text] [Related]
45. Effect of ultraclean air in operating rooms on deep sepsis in the joint after total hip or knee replacement: a randomised study. Lidwell OM; Lowbury EJ; Whyte W; Blowers R; Stanley SJ; Lowe D Br Med J (Clin Res Ed); 1982 Jul; 285(6334):10-4. PubMed ID: 6805791 [TBL] [Abstract][Full Text] [Related]
46. The effect of a portable HEPA-filtered body exhaust system on airborne microbial contamination in a conventional operating room. Bohn WW; McKinsey DS; Dykstra M; Koppe S Infect Control Hosp Epidemiol; 1996 Jul; 17(7):419-22. PubMed ID: 8839798 [TBL] [Abstract][Full Text] [Related]
47. Comparison of number of airborne bacteria in operating rooms with turbulent mixing ventilation and unidirectional airflow when using reusable scrub suits and single-use scrub suits. Tammelin A; Kylmänen P; Samuelsson A J Hosp Infect; 2023 May; 135():119-124. PubMed ID: 36963617 [TBL] [Abstract][Full Text] [Related]
48. [Quantitative study of bacterial flora in operating room air]. Berche P; Ghnassia JC; Avril JL; Frauchere JL; Soussy JC Sem Hop; 1978 Jun; 54(17-20):653-7. PubMed ID: 211615 [TBL] [Abstract][Full Text] [Related]
49. [Air cleanliness in operating rooms: on-site controls and biological testing]. Vichard P; Talon D; Schoenleber T; Obert L Bull Acad Natl Med; 2006 Jun; 190(6):1189-207; discussion 1207-8. PubMed ID: 17195403 [TBL] [Abstract][Full Text] [Related]
50. [The importance of the airborne microorganisms evaluation in the operating rooms: the biological risk for health care workers]. Gioffrè A; Dragone M; Ammoscato I; Iannò A; Marramao A; Samele P; Sorrentino D G Ital Med Lav Ergon; 2007; 29(3 Suppl):743-5. PubMed ID: 18409936 [TBL] [Abstract][Full Text] [Related]
51. Surgical Smoke and Airborne Microbial Contamination in Operating Theatres: Influence of Ventilation and Surgical Phases. Romano F; Milani S; Gustén J; Joppolo CM Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32727035 [TBL] [Abstract][Full Text] [Related]
52. Survey of operating theatre ventilation facilities for minimally invasive surgery in Great Britain and Northern Ireland: current practice and considerations for the future. Smyth ET; Humphreys H; Stacey A; Taylor EW; Hoffman P; Bannister G J Hosp Infect; 2005 Oct; 61(2):112-22. PubMed ID: 16240467 [TBL] [Abstract][Full Text] [Related]
53. Airborne particle dispersion around the feet of surgical staff while walking in and out of a bio-clean operating theatre. Sunagawa S; Koseki H; Noguchi C; Yonekura A; Matsumura U; Watanabe K; Osaki M J Hosp Infect; 2020 Oct; 106(2):318-324. PubMed ID: 32702464 [TBL] [Abstract][Full Text] [Related]
55. Airborne contamination of wounds in joint replacement operations: the relationship to sepsis rates. Lidwell OM; Lowbury EJ; Whyte W; Blowers R; Stanley SJ; Lowe D J Hosp Infect; 1983 Jun; 4(2):111-31. PubMed ID: 6195220 [TBL] [Abstract][Full Text] [Related]
56. Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: experiences from a Swedish orthopedic center. Erichsen Andersson A; Petzold M; Bergh I; Karlsson J; Eriksson BI; Nilsson K Am J Infect Control; 2014 Jun; 42(6):665-9. PubMed ID: 24713595 [TBL] [Abstract][Full Text] [Related]
57. Evaluation and optimum use of directed horizontal filtered air flow for surgeries. Buchberg H; Amstutz HC; Wright JD; Lodwig RM Clin Orthop Relat Res; 1975 Sep; (111):151-5. PubMed ID: 1157413 [TBL] [Abstract][Full Text] [Related]
58. Wound infections after surgery in a modern operating suite: clinical, bacteriological and epidemiological findings. Bengtsson S; Hambraeus A; Laurell G J Hyg (Lond); 1979 Aug; 83(1):41-57. PubMed ID: 379212 [TBL] [Abstract][Full Text] [Related]
59. Continuous monitoring of aerial bioburden within intensive care isolation rooms and identification of high-risk activities. Dougall LR; Booth MG; Khoo E; Hood H; MacGregor SJ; Anderson JG; Timoshkin IV; Maclean M J Hosp Infect; 2019 Oct; 103(2):185-192. PubMed ID: 31145931 [TBL] [Abstract][Full Text] [Related]
60. Source strength as a measurement to define the ability of clean air suits to reduce airborne contamination in operating rooms. Lytsy B; Hambraeus A; Ljungqvist B; Ransjö U; Reinmüller B J Hosp Infect; 2022 Jan; 119():9-15. PubMed ID: 34619268 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]