These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 26766447)

  • 1. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
    Buckley CE; Moore RE; Reade A; Goldberg AR; Weiner OD; Clarke JDW
    Dev Cell; 2016 Jan; 36(1):117-126. PubMed ID: 26766447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Control of Subcellular Protein Location and Signaling in Vertebrate Embryos.
    Buckley CE
    Methods Mol Biol; 2019; 1920():143-162. PubMed ID: 30737691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Protein Cleavage in Zebrafish Embryos.
    Brown W; Albright S; Tsang M; Deiters A
    Chembiochem; 2022 Dec; 23(23):e202200297. PubMed ID: 36196665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.
    Reade A; Motta-Mena LB; Gardner KH; Stainier DY; Weiner OD; Woo S
    Development; 2017 Jan; 144(2):345-355. PubMed ID: 27993986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-neuromodulatory Optogenetic Tools in Zebrafish.
    Varady A; Distel M
    Front Cell Dev Biol; 2020; 8():418. PubMed ID: 32582702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development and application of optogenetic tools].
    Wei Q; Xu C; Wang M; Ye H
    Sheng Wu Gong Cheng Xue Bao; 2019 Dec; 35(12):2238-2256. PubMed ID: 31880133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-conductance chemo-optogenetic system based on the vertebrate channel Trpa1b.
    Lam PY; Mendu SK; Mills RW; Zheng B; Padilla H; Milan DJ; Desai BN; Peterson RT
    Sci Rep; 2017 Sep; 7(1):11839. PubMed ID: 28928472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry.
    Cavanaugh KE; Oakes PW; Gardel ML
    Curr Protoc Cell Biol; 2020 Mar; 86(1):e102. PubMed ID: 32031760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic Signaling Activation in Zebrafish Embryos.
    Saul AJ; Rogers CE; Garmendia-Cedillos M; Pohida T; Rogers KW
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37955383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in
    Oda S; Sato-Ebine E; Nakamura A; Kimura KD; Aoki K
    ACS Synth Biol; 2023 Mar; 12(3):700-708. PubMed ID: 36802521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neuropsin-based optogenetic tool for precise control of G
    Dai R; Yu T; Weng D; Li H; Cui Y; Wu Z; Guo Q; Zou H; Wu W; Gao X; Qi Z; Ren Y; Wang S; Li Y; Luo M
    Sci China Life Sci; 2022 Jul; 65(7):1271-1284. PubMed ID: 35579776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish.
    Beyer HM; Juillot S; Herbst K; Samodelov SL; Müller K; Schamel WW; Römer W; Schäfer E; Nagy F; Strähle U; Weber W; Zurbriggen MD
    ACS Synth Biol; 2015 Sep; 4(9):951-8. PubMed ID: 25803699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optogenetic approach to control protein localization during embryogenesis of the sea urchin.
    Uchida A; Yajima M
    Dev Biol; 2018 Sep; 441(1):19-30. PubMed ID: 29958898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bacterial phytochrome-based optogenetic system controllable with near-infrared light.
    Kaberniuk AA; Shemetov AA; Verkhusha VV
    Nat Methods; 2016 Jul; 13(7):591-7. PubMed ID: 27159085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic control of signaling in mammalian cells.
    Beyer HM; Naumann S; Weber W; Radziwill G
    Biotechnol J; 2015 Feb; 10(2):273-83. PubMed ID: 25216399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber Optic-Based Photostimulation of Larval Zebrafish.
    Arrenberg AB
    Methods Mol Biol; 2016; 1451():343-54. PubMed ID: 27464820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo optogenetics for light-induced oxidative stress in transgenic zebrafish expressing the KillerRed photosensitizer protein.
    Teh C; Korzh V
    Methods Mol Biol; 2014; 1148():229-38. PubMed ID: 24718805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic control of intracellular signaling pathways.
    Zhang K; Cui B
    Trends Biotechnol; 2015 Feb; 33(2):92-100. PubMed ID: 25529484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.