These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 26766633)

  • 1. In situ longitudinal pre-stretch in the human femoropopliteal artery.
    Kamenskiy A; Seas A; Bowen G; Deegan P; Desyatova A; Bohlim N; Poulson W; MacTaggart J
    Acta Biomater; 2016 Mar; 32():231-237. PubMed ID: 26766633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical, structural, and physiologic differences between above and below-knee human arteries.
    Struczewska P; Razian SA; Townsend K; Jadidi M; Shahbad R; Zamani E; Gamache J; MacTaggart J; Kamenskiy A
    Acta Biomater; 2024 Mar; 177():278-299. PubMed ID: 38307479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments.
    Poulson W; Kamenskiy A; Seas A; Deegan P; Lomneth C; MacTaggart J
    J Vasc Surg; 2018 Feb; 67(2):607-613. PubMed ID: 28526560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages.
    Desyatova A; MacTaggart J; Poulson W; Deegan P; Lomneth C; Sandip A; Kamenskiy A
    Biomech Model Mechanobiol; 2017 Jun; 16(3):775-785. PubMed ID: 27868162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and large-format histochemistry to characterize peripheral artery compositional gradients.
    Nguyen VA; Brooks-Richards TL; Ren J; Woodruff MA; Allenby MC
    Microsc Res Tech; 2023 Dec; 86(12):1642-1654. PubMed ID: 37602569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-Specific Properties of the Human Infra-Renal Aorta During Aging Considering Pre/Post-Failure Damage.
    Sokolis DP
    J Biomech Eng; 2024 Feb; 146(2):. PubMed ID: 38019302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive description of human femoropopliteal artery aging.
    Kamenskiy A; Seas A; Deegan P; Poulson W; Anttila E; Sim S; Desyatova A; MacTaggart J
    Biomech Model Mechanobiol; 2017 Apr; 16(2):681-692. PubMed ID: 27771811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries.
    Shahbad R; Pipinos M; Jadidi M; Desyatova A; Gamache J; MacTaggart J; Kamenskiy A
    Ann Biomed Eng; 2024 Apr; 52(4):794-815. PubMed ID: 38321357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A viscoelastic constitutive model for human femoropopliteal arteries.
    Zhang W; Jadidi M; Razian SA; Holzapfel GA; Kamenskiy A; Nordsletten DA
    Acta Biomater; 2023 Oct; 170():68-85. PubMed ID: 37699504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical and structural responses of the aorta to intermittent hypobaric hypoxia in a rat model.
    Utrera A; Navarrete Á; González-Candia A; García-Herrera C; Herrera EA
    Sci Rep; 2022 Mar; 12(1):3790. PubMed ID: 35260626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes].
    Wang T; Feng H; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):303-309. PubMed ID: 33913290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages.
    Jadidi M; Sherifova S; Sommer G; Kamenskiy A; Holzapfel GA
    Acta Biomater; 2021 Feb; 121():461-474. PubMed ID: 33279711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of morphometric, structural, mechanical, and physiologic characteristics of human superficial femoral and popliteal arteries.
    Jadidi M; Razian SA; Anttila E; Doan T; Adamson J; Pipinos M; Kamenskiy A
    Acta Biomater; 2021 Feb; 121():431-443. PubMed ID: 33227490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery.
    Jadidi M; Razian SA; Habibnezhad M; Anttila E; Kamenskiy A
    Acta Biomater; 2021 Jan; 119():268-283. PubMed ID: 33127484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of longitudinal pre-stretch on the mechanics of human aorta before and after thoracic endovascular aortic repair (TEVAR) in trauma patients.
    Desyatova A; MacTaggart J; Kamenskiy A
    Biomech Model Mechanobiol; 2020 Feb; 19(1):401-413. PubMed ID: 31489481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress-stretch state.
    Jadidi M; Desyatova A; MacTaggart J; Kamenskiy A
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1591-1605. PubMed ID: 31069592
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.