These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26766635)

  • 1. Programmed Switching of Single Polymer Conformation on DNA Origami.
    Krissanaprasit A; Madsen M; Knudsen JB; Gudnason D; Surareungchai W; Birkedal V; Gothelf KV
    ACS Nano; 2016 Feb; 10(2):2243-50. PubMed ID: 26766635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise structure control of three-state nanomechanical DNA origami devices.
    Kuzuya A; Watanabe R; Hashizume M; Kaino M; Minamida S; Kameda K; Ohya Y
    Methods; 2014 May; 67(2):250-5. PubMed ID: 24270064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Single Molecule Polyphenylene-Vinylene Photonic Wire.
    Madsen M; Bakke MR; Gudnason DA; Sandahl AF; Hansen RA; Knudsen JB; Kodal ALB; Birkedal V; Gothelf KV
    ACS Nano; 2021 Jun; 15(6):9404-9411. PubMed ID: 33938214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, Single-Molecule Manipulation, and Energy Transfer Investigation of a Polyfluorene-graft-DNA polymer.
    Madsen M; Christensen RS; Krissanaprasit A; Bakke MR; Riber CF; Nielsen KS; Zelikin AN; Gothelf KV
    Chemistry; 2017 Aug; 23(44):10511-10515. PubMed ID: 28640936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy.
    Kuzuya A; Sakai Y; Yamazaki T; Xu Y; Komiyama M
    Nat Commun; 2011 Aug; 2():449. PubMed ID: 21863016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular threading and tunable molecular recognition on DNA origami nanostructures.
    Wu N; Czajkowsky DM; Zhang J; Qu J; Ye M; Zeng D; Zhou X; Hu J; Shao Z; Li B; Fan C
    J Am Chem Soc; 2013 Aug; 135(33):12172-5. PubMed ID: 23924191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami.
    Doane TL; Alam R; Maye MM
    Nanoscale; 2015 Feb; 7(7):2883-8. PubMed ID: 25611367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.
    Roth E; Glick Azaria A; Girshevitz O; Bitler A; Garini Y
    Nano Lett; 2018 Nov; 18(11):6703-6709. PubMed ID: 30352164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toehold-mediated nonenzymatic DNA strand displacement as a platform for DNA genotyping.
    Khodakov DA; Khodakova AS; Linacre A; Ellis AV
    J Am Chem Soc; 2013 Apr; 135(15):5612-9. PubMed ID: 23548100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and energy transfer in single conjugated polymers.
    Bolinger JC; Traub MC; Brazard J; Adachi T; Barbara PF; Vanden Bout DA
    Acc Chem Res; 2012 Nov; 45(11):1992-2001. PubMed ID: 22775295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA origami templated self-assembly of discrete length single wall carbon nanotubes.
    Zhao Z; Liu Y; Yan H
    Org Biomol Chem; 2013 Jan; 11(4):596-8. PubMed ID: 23208726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-mediated energy transfer between an anionic water-soluble conjugated polymer and Texas red labeled DNA for protease and nuclease activity study.
    Zhang Y; Wang Y; Liu B
    Anal Chem; 2009 May; 81(10):3731-7. PubMed ID: 19371059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guiding the folding pathway of DNA origami.
    Dunn KE; Dannenberg F; Ouldridge TE; Kwiatkowska M; Turberfield AJ; Bath J
    Nature; 2015 Sep; 525(7567):82-6. PubMed ID: 26287459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.
    Rahbani JF; Hariri AA; Cosa G; Sleiman HF
    ACS Nano; 2015 Dec; 9(12):11898-908. PubMed ID: 26556531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy.
    Chao J; Zhang P; Wang Q; Wu N; Zhang F; Hu J; Fan CH; Li B
    Nanoscale; 2016 Mar; 8(11):5842-6. PubMed ID: 26932823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates.
    Maune HT; Han SP; Barish RD; Bockrath M; Goddard WA; Rothemund PW; Winfree E
    Nat Nanotechnol; 2010 Jan; 5(1):61-6. PubMed ID: 19898497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.