These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

688 related articles for article (PubMed ID: 26767196)

  • 41. Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells.
    Haruyama J; Sodeyama K; Han L; Tateyama Y
    Acc Chem Res; 2016 Mar; 49(3):554-61. PubMed ID: 26901120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of Interfacial Layers in Perovskite Solar Cells.
    Cho AN; Park NG
    ChemSusChem; 2017 Oct; 10(19):3687-3704. PubMed ID: 28736950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electron Transport Layer-Free Solar Cells Based on Perovskite-Fullerene Blend Films with Enhanced Performance and Stability.
    Pascual J; Kosta I; Tuyen Ngo T; Chuvilin A; Cabanero G; Grande HJ; Barea EM; Mora-Seró I; Delgado JL; Tena-Zaera R
    ChemSusChem; 2016 Sep; 9(18):2679-2685. PubMed ID: 27553898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modified Fullerenes for Efficient Electron Transport Layer-Free Perovskite/Fullerene Blend-Based Solar Cells.
    Sandoval-Torrientes R; Pascual J; García-Benito I; Collavini S; Kosta I; Tena-Zaera R; Martín N; Delgado JL
    ChemSusChem; 2017 May; 10(9):2023-2029. PubMed ID: 28296265
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-Cost Carbazole-Based Hole-Transport Material for Highly Efficient Perovskite Solar Cells.
    Chen Z; Li H; Zheng X; Zhang Q; Li Z; Hao Y; Fang G
    ChemSusChem; 2017 Aug; 10(15):3111-3117. PubMed ID: 28653432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unique properties of halide perovskites as possible origins of the superior solar cell performance.
    Yin WJ; Shi T; Yan Y
    Adv Mater; 2014 Jul; 26(27):4653-8. PubMed ID: 24827122
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Near-Infrared-Absorbing and Dopant-Free Heterocyclic Quinoid-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells.
    Ni JS; Hsieh HC; Chen CA; Wen YS; Wu WT; Shih YC; Lin KF; Wang L; Lin JT
    ChemSusChem; 2016 Nov; 9(22):3139-3144. PubMed ID: 27791344
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New Horizons for Perovskite Solar Cells Employing DNA-CTMA as the Hole-Transporting Material.
    Yusoff AR; Kim J; Jang J; Nazeeruddin MK
    ChemSusChem; 2016 Jul; 9(13):1736-42. PubMed ID: 27167727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells.
    Li H; Fu K; Boix PP; Wong LH; Hagfeldt A; Grätzel M; Mhaisalkar SG; Grimsdale AC
    ChemSusChem; 2014 Dec; 7(12):3420-5. PubMed ID: 25233841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.
    Collavini S; Kosta I; Völker SF; Cabanero G; Grande HJ; Tena-Zaera R; Delgado JL
    ChemSusChem; 2016 Jun; 9(11):1263-70. PubMed ID: 26991031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Annealing-Free Cr
    Dong J; Wu J; Jia J; He X; Lan Z; Fan L; Lin J; Huang M
    ChemSusChem; 2018 Feb; 11(3):619-628. PubMed ID: 29266781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates.
    Dkhissi Y; Meyer S; Chen D; Weerasinghe HC; Spiccia L; Cheng YB; Caruso RA
    ChemSusChem; 2016 Apr; 9(7):687-95. PubMed ID: 26893225
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process.
    Li MH; Yeh HH; Chiang YH; Jeng US; Su CJ; Shiu HW; Hsu YJ; Kosugi N; Ohigashi T; Chen YA; Shen PS; Chen P; Guo TF
    Adv Mater; 2018 Jul; 30(30):e1801401. PubMed ID: 29883002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells.
    Kim DH; Han GS; Seong WM; Lee JW; Kim BJ; Park NG; Hong KS; Lee S; Jung HS
    ChemSusChem; 2015 Jul; 8(14):2392-8. PubMed ID: 25891531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Al
    Zhang J; Hultqvist A; Zhang T; Jiang L; Ruan C; Yang L; Cheng Y; Edoff M; Johansson EMJ
    ChemSusChem; 2017 Oct; 10(19):3810-3817. PubMed ID: 28857493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-Cost Perovskite Solar Cells Employing Dimethoxydiphenylamine-Substituted Bistricyclic Aromatic Enes as Hole Transport Materials.
    Rakstys K; Paek S; Grancini G; Gao P; Jankauskas V; Asiri AM; Nazeeruddin MK
    ChemSusChem; 2017 Oct; 10(19):3825-3832. PubMed ID: 28650097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells.
    Zhou Z; Wang Z; Zhou Y; Pang S; Wang D; Xu H; Liu Z; Padture NP; Cui G
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9705-9. PubMed ID: 26118666
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.
    Zhang W; Saliba M; Stranks SD; Sun Y; Shi X; Wiesner U; Snaith HJ
    Nano Lett; 2013 Sep; 13(9):4505-10. PubMed ID: 23947387
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mixed-Organic-Cation (FA)
    Chen J; Xu J; Xiao L; Zhang B; Dai S; Yao J
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2449-2458. PubMed ID: 28054480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Replacement of Biphenyl by Bipyridine Enabling Powerful Hole Transport Materials for Efficient Perovskite Solar Cells.
    Wu F; Shan Y; Qiao J; Zhong C; Wang R; Song Q; Zhu L
    ChemSusChem; 2017 Oct; 10(19):3833-3838. PubMed ID: 28656660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.