BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26767468)

  • 1. Myeloma impairs mature osteoblast function but causes early expansion of osteo-progenitors: temporal changes in bone physiology and gene expression in the KMS12BM model.
    Kassen D; Lath D; Lach A; Evans H; Chantry A; Rabin N; Croucher P; Yong KL
    Br J Haematol; 2016 Jan; 172(1):64-79. PubMed ID: 26767468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bone marrow stromal compartment in multiple myeloma patients retains capability for osteogenic differentiation in vitro: defining the stromal defect in myeloma.
    Kassen D; Moore S; Percy L; Herledan G; Bounds D; Rodriguez-Justo M; Croucher P; Yong K
    Br J Haematol; 2014 Oct; 167(2):194-206. PubMed ID: 25079197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention.
    Kupisiewicz K
    Dan Med Bull; 2011 May; 58(5):B4277. PubMed ID: 21535989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function.
    Vallet S; Pozzi S; Patel K; Vaghela N; Fulciniti MT; Veiby P; Hideshima T; Santo L; Cirstea D; Scadden DT; Anderson KC; Raje N
    Leukemia; 2011 Jul; 25(7):1174-81. PubMed ID: 21403648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblast function in myeloma.
    Roodman GD
    Bone; 2011 Jan; 48(1):135-40. PubMed ID: 20601285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone Marrow Stress Decreases Osteogenic Progenitors.
    Ng AH; Baht GS; Alman BA; Grynpas MD
    Calcif Tissue Int; 2015 Nov; 97(5):476-86. PubMed ID: 26220824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.
    Liu H; Liu Z; Du J; He J; Lin P; Amini B; Starbuck MW; Novane N; Shah JJ; Davis RE; Hou J; Gagel RF; Yang J
    Sci Transl Med; 2016 Aug; 8(353):353ra113. PubMed ID: 27559096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenesis of myeloma bone disease.
    Roodman GD
    J Cell Biochem; 2010 Feb; 109(2):283-91. PubMed ID: 20014067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma.
    Heath DJ; Chantry AD; Buckle CH; Coulton L; Shaughnessy JD; Evans HR; Snowden JA; Stover DR; Vanderkerken K; Croucher PI
    J Bone Miner Res; 2009 Mar; 24(3):425-36. PubMed ID: 19016584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multiple myeloma bone eco-system and its relation to oncogenesis.
    Bataille R
    Morphologie; 2015 Jun; 99(325):31-7. PubMed ID: 26005000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of animal models in multiple myeloma.
    Libouban H
    Morphologie; 2015 Jun; 99(325):63-72. PubMed ID: 25898798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.
    Lawson MA; Paton-Hough JM; Evans HR; Walker RE; Harris W; Ratnabalan D; Snowden JA; Chantry AD
    PLoS One; 2015; 10(3):e0119546. PubMed ID: 25768011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytokine-induced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity.
    van't Hof RJ; Ralston SH
    J Bone Miner Res; 1997 Nov; 12(11):1797-804. PubMed ID: 9383684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation.
    Thudium CS; Moscatelli I; Flores C; Thomsen JS; Brüel A; Gudmann NS; Hauge EM; Karsdal MA; Richter J; Henriksen K
    Calcif Tissue Int; 2014 Jul; 95(1):83-93. PubMed ID: 24838599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-β-related mechanisms of bone destruction in multiple myeloma.
    Matsumoto T; Abe M
    Bone; 2011 Jan; 48(1):129-34. PubMed ID: 20570621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease.
    Eda H; Santo L; Wein MN; Hu DZ; Cirstea DD; Nemani N; Tai YT; Raines SE; Kuhstoss SA; Munshi NC; Kronenberg HM; Raje NS
    J Bone Miner Res; 2016 Jun; 31(6):1225-34. PubMed ID: 26763740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cytokines in bone diseases. Cytokines and myeloma bone disease].
    Abe M
    Clin Calcium; 2010 Oct; 20(10):1474-80. PubMed ID: 20890028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanisms for formation of myeloma bone disease].
    Yata K; Abe M; Matsumoto T
    Clin Calcium; 2008 Apr; 18(4):438-46. PubMed ID: 18379024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p38 MAPK in myeloma cells regulates osteoclast and osteoblast activity and induces bone destruction.
    He J; Liu Z; Zheng Y; Qian J; Li H; Lu Y; Xu J; Hong B; Zhang M; Lin P; Cai Z; Orlowski RZ; Kwak LW; Yi Q; Yang J
    Cancer Res; 2012 Dec; 72(24):6393-402. PubMed ID: 23066034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model.
    Yaccoby S; Wezeman MJ; Zangari M; Walker R; Cottler-Fox M; Gaddy D; Ling W; Saha R; Barlogie B; Tricot G; Epstein J
    Haematologica; 2006 Feb; 91(2):192-9. PubMed ID: 16461303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.