BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 26767518)

  • 1. Impact of heart disease and calibration interval on accuracy of pulse transit time-based blood pressure estimation.
    Ding X; Zhang Y; Tsang HK
    Physiol Meas; 2016 Feb; 37(2):227-37. PubMed ID: 26767518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Pulse Transit Time Based Blood Pressure Estimation on Atrial Fibrillation Patients.
    Chen Y; Huang S; Wang T; Ma T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2679-2682. PubMed ID: 33018558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites.
    Butlin M; Shirbani F; Barin E; Tan I; Spronck B; Avolio AP
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2377-2383. PubMed ID: 29993392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An examination of calibration intervals required for accurately tracking blood pressure using pulse transit time algorithms.
    McCarthy BM; Vaughan CJ; O'Flynn B; Mathewson A; Ó Mathúna C
    J Hum Hypertens; 2013 Dec; 27(12):744-50. PubMed ID: 23698006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis for the Influence of ABR Sensitivity on PTT-Based Cuff-Less Blood Pressure Estimation before and after Exercise.
    Xu Y; Ping P; Wang D; Zhang W
    J Healthc Eng; 2018; 2018():5396030. PubMed ID: 30402213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation.
    Ding X; Yan BP; Zhang YT; Liu J; Zhao N; Tsang HK
    Sci Rep; 2017 Sep; 7(1):11554. PubMed ID: 28912525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Predictions on Maximum Calibration Period and Acceptable Error Limits.
    Mukkamala R; Hahn JO
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1410-1420. PubMed ID: 28952930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography.
    Huynh TH; Jafari R; Chung WY
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):967-976. PubMed ID: 30130167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Revised Point-to-Point Calibration Approach with Adaptive Errors Correction to Weaken Initial Sensitivity of Cuff-Less Blood Pressure Estimation.
    Shao J; Shi P; Hu S; Yu H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time.
    Martin SL; Carek AM; Kim CS; Ashouri H; Inan OT; Hahn JO; Mukkamala R
    Sci Rep; 2016 Dec; 6():39273. PubMed ID: 27976741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval.
    Fischer C; Penzel T
    Physiol Meas; 2019 Jan; 40(1):014001. PubMed ID: 30523856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter.
    Chen Y; Shi S; Liu YK; Huang SL; Ma T
    Physiol Meas; 2018 Sep; 39(9):095002. PubMed ID: 30089101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous blood pressure measurement using the pulse transit time: Comparison to intra-arterial measurement.
    Patzak A; Mendoza Y; Gesche H; Konermann M
    Blood Press; 2015; 24(4):217-21. PubMed ID: 25857601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients.
    Liu Q; Yan BP; Yu CM; Zhang YT; Poon CC
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):346-52. PubMed ID: 24158470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.