BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26767617)

  • 1. Reversing methanogenesis to capture methane for liquid biofuel precursors.
    Soo VW; McAnulty MJ; Tripathi A; Zhu F; Zhang L; Hatzakis E; Smith PB; Agrawal S; Nazem-Bokaee H; Gopalakrishnan S; Salis HM; Ferry JG; Maranas CD; Patterson AD; Wood TK
    Microb Cell Fact; 2016 Jan; 15():11. PubMed ID: 26767617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane.
    McAnulty MJ; Poosarla VG; Li J; Soo VW; Zhu F; Wood TK
    Biotechnol Bioeng; 2017 Apr; 114(4):852-861. PubMed ID: 27800599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.
    Catlett JL; Ortiz AM; Buan NR
    Appl Environ Microbiol; 2015 Oct; 81(19):6528-37. PubMed ID: 26162885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Reduced F
    Heryakusuma C; Susanti D; Yu H; Li Z; Purwantini E; Hettich RL; Orphan VJ; Mukhopadhyay B
    J Bacteriol; 2022 Jul; 204(7):e0007822. PubMed ID: 35695516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic techniques for studies of methyl-coenzyme M reductase from Methanosarcina acetivorans C2A.
    Nayak DD; Metcalf WW
    Methods Enzymol; 2018; 613():325-347. PubMed ID: 30509472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for Electron Uptake by Methanosarcina acetivorans during Direct Interspecies Electron Transfer.
    Holmes DE; Zhou J; Ueki T; Woodard T; Lovley DR
    mBio; 2021 Oct; 12(5):e0234421. PubMed ID: 34607451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea.
    Zheng K; Ngo PD; Owens VL; Yang XP; Mansoorabadi SO
    Science; 2016 Oct; 354(6310):339-342. PubMed ID: 27846569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.
    Duszenko N; Buan NR
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans.
    Li Q; Li L; Rejtar T; Lessner DJ; Karger BL; Ferry JG
    J Bacteriol; 2006 Jan; 188(2):702-10. PubMed ID: 16385060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Archaea-specific
    Gupta D; Shalvarjian KE; Nayak DD
    Elife; 2022 Apr; 11():. PubMed ID: 35380107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans.
    Schöne C; Poehlein A; Rother M
    Appl Environ Microbiol; 2023 Jul; 89(7):e0216122. PubMed ID: 37347168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.
    Yan Z; Wang M; Ferry JG
    mBio; 2017 Feb; 8(1):. PubMed ID: 28174314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane oxidation by anaerobic archaea for conversion to liquid fuels.
    Mueller TJ; Grisewood MJ; Nazem-Bokaee H; Gopalakrishnan S; Ferry JG; Wood TK; Maranas CD
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):391-401. PubMed ID: 25427790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically.
    Shima S; Krueger M; Weinert T; Demmer U; Kahnt J; Thauer RK; Ermler U
    Nature; 2011 Nov; 481(7379):98-101. PubMed ID: 22121022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate-dependent growth of
    Richter M; Sattler C; Schöne C; Rother M
    J Bacteriol; 2024 Feb; 206(2):e0036323. PubMed ID: 38305193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea.
    Nayak DD; Mahanta N; Mitchell DA; Metcalf WW
    Elife; 2017 Sep; 6():. PubMed ID: 28880150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex.
    Schlegel K; Welte C; Deppenmeier U; Müller V
    FEBS J; 2012 Dec; 279(24):4444-52. PubMed ID: 23066798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and transcriptomic response to methyl-coenzyme M reductase limitation in
    Chadwick GL; Dury GA; Nayak DD
    Appl Environ Microbiol; 2024 Jun; ():e0222023. PubMed ID: 38916294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.