These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26767636)

  • 21. Combination of in situ spectroscopy and chemometric techniques to discriminate different types of Roman bricks and the influence of microclimate environment.
    Scatigno C; Prieto-Taboada N; García-Florentino C; Fdez-Ortiz de Vallejuelo S; Maguregui M; Madariaga JM
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6285-6299. PubMed ID: 29247413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multilayers quantitative X-ray fluorescence analysis applied to easel paintings.
    de Viguerie L; Sole VA; Walter P
    Anal Bioanal Chem; 2009 Dec; 395(7):2015-20. PubMed ID: 19688344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of field-portable XRF analyzers for rapid screening of toxic elements in FDA-regulated products.
    Palmer PT; Jacobs R; Baker PE; Ferguson K; Webber S
    J Agric Food Chem; 2009 Apr; 57(7):2605-13. PubMed ID: 19334748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility of the use of a handheld XRF analyzer to measure skin iron to monitor iron levels in critical organs.
    Dao E; Zeller MP; Wainman BC; Farquharson MJ
    J Trace Elem Med Biol; 2018 Dec; 50():305-311. PubMed ID: 30262296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.
    Chen Z; Williams PN; Zhang H
    Environ Sci Process Impacts; 2013 Sep; 15(9):1768-74. PubMed ID: 23912422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.
    Navarro C; Díaz M; Villa-García MA
    Environ Sci Technol; 2010 Jul; 44(14):5383-8. PubMed ID: 20568743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The XRF mapping of archaeological artefacts as the key to understanding of the past.
    Kozak L; Niedzielski P; Jakubowski K; Michałowski A; Krzyżanowska M; Teska M; Wawrzyniak M; Kot K; Piotrowska M
    J Xray Sci Technol; 2016 Apr; 24(3):427-36. PubMed ID: 27061795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples.
    Lawryk NJ; Feng HA; Chen BT
    J Occup Environ Hyg; 2009 Jul; 6(7):433-45. PubMed ID: 19387888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Handheld X-ray fluorescence geochemical data of geological and archaeological obsidian from Sonora, Mexico.
    Vidal-Solano JR; Gómez-Valencia AM; Hinojo-Hinojo A; Cruz RL
    Data Brief; 2020 Dec; 33():106410. PubMed ID: 33195766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Portable apparatus for in situ x-ray diffraction and fluorescence analyses of artworks.
    Eveno M; Moignard B; Castaing J
    Microsc Microanal; 2011 Oct; 17(5):667-73. PubMed ID: 21615981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.
    Chung FH
    Appl Spectrosc; 2017 May; 71(5):1060-1068. PubMed ID: 27553647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Analysis of films by X-ray fluorescence spectrometry].
    Han XY; Zhuo SJ; Wang PL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jan; 26(1):159-65. PubMed ID: 16827370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A calibration method for proposed XRF measurements of arsenic and selenium in nail clippings.
    Gherase MR; Fleming DE
    Phys Med Biol; 2011 Oct; 56(20):N215-25. PubMed ID: 21937772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence.
    Kalcsits LA
    Front Plant Sci; 2016; 7():442. PubMed ID: 27092160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium and Phosphorus Detection Using Benchtop Versus Handheld X-ray Fluorescence Spectrometers.
    Kuzel AR; Christensen AM; Marvin SM
    J Forensic Sci; 2016 Jan; 61 Suppl 1():S190-2. PubMed ID: 26375756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined non-destructive XRF and SR-XAS study of archaeological artefacts.
    Bardelli F; Barone G; Crupi V; Longo F; Majolino D; Mazzoleni P; Venuti V
    Anal Bioanal Chem; 2011 Mar; 399(9):3147-53. PubMed ID: 21311873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gaining improved chemical composition by exploitation of Compton-to-Rayleigh intensity ratio in XRF analysis.
    Hodoroaba VD; Rackwitz V
    Anal Chem; 2014 Jul; 86(14):6858-64. PubMed ID: 24950635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples.
    Sterling DA; Lewis RD; Luke DA; Shadel BN
    Environ Res; 2000 Jun; 83(2):174-9. PubMed ID: 10856190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined Spectroscopic Analysis of Beads from the Tombs of Kindoki, Lower Congo Province (Democratic Republic of the Congo).
    Rousaki A; Coccato A; Verhaeghe C; Clist BO; Bostoen K; Vandenabeele P; Moens L
    Appl Spectrosc; 2016 Jan; 70(1):76-93. PubMed ID: 26767635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A prototype handheld X-ray diffraction instrument.
    Hansford G
    J Appl Crystallogr; 2018 Dec; 51(Pt 6):1571-1585. PubMed ID: 30546288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.