BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26767982)

  • 1. Nutritional stress exacerbates hepatic steatosis induced by deletion of the histidine nucleotide-binding (Hint2) mitochondrial protein.
    Martin J; Balmer ML; Rajendran S; Maurhofer O; Dufour JF; St-Pierre MV
    Am J Physiol Gastrointest Liver Physiol; 2016 Apr; 310(7):G497-509. PubMed ID: 26767982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of the histidine triad nucleotide-binding hint2 gene in mice affects glycemic control and mitochondrial function.
    Martin J; Maurhofer O; Bellance N; Benard G; Graber F; Hahn D; Galinier A; Hora C; Gupta A; Ferrand G; Hoppeler H; Rossignol R; Dufour JF; St-Pierre MV
    Hepatology; 2013 May; 57(5):2037-48. PubMed ID: 22961760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism.
    Rajasekaran R; Felser A; Nuoffer JM; Dufour JF; St-Pierre MV
    FASEB J; 2018 Sep; 32(9):5143-5161. PubMed ID: 29913563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotrophin Deficiency Induces Browning of Periovarian Adipose Tissue and Protects against High-Fat Diet-Induced Hepatic Steatosis.
    Zuccaro A; Zapatería B; Sánchez-Alonso MG; Haro M; Limones M; Terrados G; Izquierdo A; Corrales P; Medina-Gómez G; Herradón G; Sevillano J; Ramos-Álvarez MDP
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice.
    Navarro CDC; Figueira TR; Francisco A; Dal'Bó GA; Ronchi JA; Rovani JC; Escanhoela CAF; Oliveira HCF; Castilho RF; Vercesi AE
    Free Radic Biol Med; 2017 Dec; 113():190-202. PubMed ID: 28964917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.
    Hirschey MD; Shimazu T; Goetzman E; Jing E; Schwer B; Lombard DB; Grueter CA; Harris C; Biddinger S; Ilkayeva OR; Stevens RD; Li Y; Saha AK; Ruderman NB; Bain JR; Newgard CB; Farese RV; Alt FW; Kahn CR; Verdin E
    Nature; 2010 Mar; 464(7285):121-5. PubMed ID: 20203611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver adapts mitochondrial function to insulin resistant and diabetic states in mice.
    Franko A; von Kleist-Retzow JC; Neschen S; Wu M; Schommers P; Böse M; Kunze A; Hartmann U; Sanchez-Lasheras C; Stoehr O; Huntgeburth M; Brodesser S; Irmler M; Beckers J; de Angelis MH; Paulsson M; Schubert M; Wiesner RJ
    J Hepatol; 2014 Apr; 60(4):816-23. PubMed ID: 24291365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential induction of genes in liver and brown adipose tissue regulated by peroxisome proliferator-activated receptor-alpha during fasting and cold exposure in acyl-CoA dehydrogenase-deficient mice.
    Goetzman ES; Tian L; Wood PA
    Mol Genet Metab; 2005 Jan; 84(1):39-47. PubMed ID: 15639194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic psychosocial defeat differently affects lipid metabolism in liver and white adipose tissue and induces hepatic oxidative stress in mice fed a high-fat diet.
    Giudetti AM; Testini M; Vergara D; Priore P; Damiano F; Gallelli CA; Romano A; Villani R; Cassano T; Siculella L; Gnoni GV; Moles A; Coccurello R; Gaetani S
    FASEB J; 2019 Jan; 33(1):1428-1439. PubMed ID: 30133327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA.
    Thapa D; Wu K; Stoner MW; Xie B; Zhang M; Manning JR; Lu Z; Li JH; Chen Y; Gucek M; Playford MP; Mehta NN; Harmon D; O'Doherty RM; Jurczak MJ; Sack MN; Scott I
    J Biol Chem; 2018 Nov; 293(46):17676-17684. PubMed ID: 30323061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease.
    Derdak Z; Villegas KA; Harb R; Wu AM; Sousa A; Wands JR
    J Hepatol; 2013 Apr; 58(4):785-91. PubMed ID: 23211317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose.
    Meyer JG; Softic S; Basisty N; Rardin MJ; Verdin E; Gibson BW; Ilkayeva O; Newgard CB; Kahn CR; Schilling B
    PLoS One; 2018; 13(12):e0208973. PubMed ID: 30586434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively.
    Shabalina IG; Kramarova TV; Nedergaard J; Cannon B
    Biochem J; 2006 Nov; 399(3):405-14. PubMed ID: 16831128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced intestinal lipid absorption and body weight-independent improvements in insulin sensitivity in high-fat diet-fed Park2 knockout mice.
    Costa DK; Huckestein BR; Edmunds LR; Petersen MC; Nasiri A; Butrico GM; Abulizi A; Harmon DB; Lu C; Mantell BS; Hartman DJ; Camporez JP; O'Doherty RM; Cline GW; Shulman GI; Jurczak MJ
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E105-16. PubMed ID: 27166280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered expression of transcription factors and genes regulating lipogenesis in liver and adipose tissue of mice with high fat diet-induced obesity and nonalcoholic fatty liver disease.
    Morgan K; Uyuni A; Nandgiri G; Mao L; Castaneda L; Kathirvel E; French SW; Morgan TR
    Eur J Gastroenterol Hepatol; 2008 Sep; 20(9):843-54. PubMed ID: 18794597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease.
    Galloway CA; Lee H; Brookes PS; Yoon Y
    Am J Physiol Gastrointest Liver Physiol; 2014 Sep; 307(6):G632-41. PubMed ID: 25080922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittent fasting improves metabolic flexibility in short-term high-fat diet-fed mice.
    Dedual MA; Wueest S; Borsigova M; Konrad D
    Am J Physiol Endocrinol Metab; 2019 Nov; 317(5):E773-E782. PubMed ID: 31503513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternate-day fasting protects the livers of mice against high-fat diet-induced inflammation associated with the suppression of Toll-like receptor 4/nuclear factor κB signaling.
    Yang W; Cao M; Mao X; Wei X; Li X; Chen G; Zhang J; Wang Z; Shi J; Huang H; Yao X; Liu C
    Nutr Res; 2016 Jun; 36(6):586-93. PubMed ID: 27188904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice.
    Neschen S; Morino K; Hammond LE; Zhang D; Liu ZX; Romanelli AJ; Cline GW; Pongratz RL; Zhang XM; Choi CS; Coleman RA; Shulman GI
    Cell Metab; 2005 Jul; 2(1):55-65. PubMed ID: 16054099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wild ginseng cambial meristematic cells ameliorate hepatic steatosis and mitochondrial dysfunction in high-fat diet-fed mice.
    Lee SB; Cho HI; Jin YW; Lee EK; Ahn JY; Lee SM
    J Pharm Pharmacol; 2016 Jan; 68(1):119-27. PubMed ID: 26806698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.