These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26767997)

  • 1. A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting.
    Osei-Yeboah F; Chang SY; Sun CC
    Pharm Res; 2016 May; 33(5):1126-32. PubMed ID: 26767997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the roles of compaction pressure and crystal hardness on powder tabletability through bonding area - Bonding strength interplay.
    Shi L; Sun CC
    Int J Pharm; 2024 Jun; 659():124253. PubMed ID: 38788972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tableting Properties and Compression Models of Labisia pumila Tablets.
    Etti CJ; Yusof YA; Chin NL; Mohd Tahir S
    J Diet Suppl; 2017 Mar; 14(2):132-145. PubMed ID: 27487244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tabletability Flip - Role of Bonding Area and Bonding Strength Interplay.
    Paul S; Wang C; Sun CC
    J Pharm Sci; 2020 Dec; 109(12):3569-3573. PubMed ID: 32910948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming powder mechanical properties by core/shell structure: compressible sand.
    Shi L; Sun CC
    J Pharm Sci; 2010 Nov; 99(11):4458-62. PubMed ID: 20845444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle size distribution and evolution in tablet structure during and after compaction.
    Fichtner F; Rasmuson A; Alderborn G
    Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Air Entrapment in Tableting: An Approximate Solution.
    Zavaliangos A; Katz JM; Daurio D; Johnson M; Pirjanian A; Alvarez-Nunez F
    J Pharm Sci; 2017 Dec; 106(12):3604-3612. PubMed ID: 28919383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of hot-melt extrusion on the tableting behaviour of polyvinyl alcohol.
    Grymonpré W; De Jaeghere W; Peeters E; Adriaensens P; Remon JP; Vervaet C
    Int J Pharm; 2016 Feb; 498(1-2):254-62. PubMed ID: 26691654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and simulation of compact strength due to particle bonding using a hybrid discrete-continuum approach.
    Koynov A; Akseli I; Cuitiño AM
    Int J Pharm; 2011 Oct; 418(2):273-85. PubMed ID: 21736930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new insight into the mechanism of the tabletability flip phenomenon.
    Wang Z; Wang C; Guo Y; Bahl D; Fok A; Sun CC
    Int J Pharm; 2024 Apr; 654():123956. PubMed ID: 38428547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J; Alderborn G
    J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A material-sparing method for assessment of powder deformation characteristics using data collected during a single compression-decompression cycle.
    Katz JM; Roopwani R; Buckner IS
    J Pharm Sci; 2013 Oct; 102(10):3687-93. PubMed ID: 23897398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial die-wall pressure as a reliable tool for studying the effect of powder water activity on high speed tableting.
    Abdel-Hamid S; Betz G
    Int J Pharm; 2011 Jun; 411(1-2):152-61. PubMed ID: 21497644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrete particle modeling and micromechanical characterization of bilayer tablet compaction.
    Yohannes B; Gonzalez M; Abebe A; Sprockel O; Nikfar F; Kiang S; Cuitiño AM
    Int J Pharm; 2017 Aug; 529(1-2):597-607. PubMed ID: 28713000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-line monitoring of the drug content of powder mixtures and tablets by near-infrared spectroscopy during the continuous direct compression tableting process.
    Järvinen K; Hoehe W; Järvinen M; Poutiainen S; Juuti M; Borchert S
    Eur J Pharm Sci; 2013 Mar; 48(4-5):680-8. PubMed ID: 23313622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the Punch Speed on the Die Wall/Powder Kinematic Friction During Tableting.
    Desbois L; Tchoreloff P; Mazel V
    J Pharm Sci; 2019 Oct; 108(10):3359-3365. PubMed ID: 31095957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surface energy on powder compactibility.
    Fichtner F; Mahlin D; Welch K; Gaisford S; Alderborn G
    Pharm Res; 2008 Dec; 25(12):2750-9. PubMed ID: 18548337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the Role of Structural Features in Bulk Mechanical Performance of Ternary Molecular Solids of Isoniazid.
    Yadav JPA; Yadav B; Kumar N; Bansal AK; Jain S
    Mol Pharm; 2018 Nov; 15(11):5252-5262. PubMed ID: 30265542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Origin of the Distinct Tabletability of Loratadine and Desloratadine: Role of the Bonding Area - Bonding Strength Interplay.
    Shi Z; Wang C; Sun CC
    Pharm Res; 2020 Jun; 37(7):133. PubMed ID: 32596756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction.
    Tye CK; Sun CC; Amidon GE
    J Pharm Sci; 2005 Mar; 94(3):465-72. PubMed ID: 15696587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.