These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26768119)

  • 1. Paper-based energy harvesting from salinity gradients.
    Chang HK; Choi E; Park J
    Lab Chip; 2016 Feb; 16(4):700-8. PubMed ID: 26768119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.
    Zhu X; Kim T; Rahimi M; Gorski CA; Logan BE
    ChemSusChem; 2017 Feb; 10(4):797-803. PubMed ID: 27911491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network.
    Choi E; Kwon K; Kim D; Park J
    Lab Chip; 2015 Jan; 15(1):168-78. PubMed ID: 25328008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doubled power density from salinity gradients at reduced intermembrane distance.
    Vermaas DA; Saakes M; Nijmeijer K
    Environ Sci Technol; 2011 Aug; 45(16):7089-95. PubMed ID: 21736348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation.
    Nam JY; Jwa E; Eom H; Kim H; Hwang K; Jeong N
    Water Res; 2021 Jul; 200():117255. PubMed ID: 34062402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane.
    Tsai TC; Liu CW; Yang RJ
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.
    Ouyang W; Wang W; Zhang H; Wu W; Li Z
    Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand.
    Kao PK; Hsu CC
    Anal Chem; 2014 Sep; 86(17):8757-62. PubMed ID: 25052546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels.
    Giokas DL; Tsogas GZ; Vlessidis AG
    Anal Chem; 2014 Jul; 86(13):6202-7. PubMed ID: 24915155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse Electrodialysis Chemical Cell for Energy Harvesting from Controlled Acid-Base Neutralization.
    Mei Y; Liu L; Lu YC; Tang CY
    Environ Sci Technol; 2019 Apr; 53(8):4640-4647. PubMed ID: 30916548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic control of capillary flow in porous media by electroosmotic pumping.
    Rosenfeld T; Bercovici M
    Lab Chip; 2019 Jan; 19(2):328-334. PubMed ID: 30566158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic paper-based analytical devices for potential use in quantitative and direct detection of disease biomarkers in clinical analysis.
    Lim WY; Goh BT; Khor SM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Aug; 1060():424-442. PubMed ID: 28683395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant.
    Veerman J; Saakes M; Metz SJ; Harmsen GJ
    Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic Analysis of Energy Harvest from Natural Salt Gradients in Nanochannels.
    He Y; Huang Z; Chen B; Tsutsui M; Shui Miao X; Taniguchi M
    Sci Rep; 2017 Oct; 7(1):13156. PubMed ID: 29030615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper.
    Xie L; Zi X; Zeng H; Sun J; Xu L; Chen S
    Anal Chim Acta; 2019 Apr; 1053():131-138. PubMed ID: 30712558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible ZnO-cellulose nanocomposite for multisource energy conversion.
    Kumar A; Gullapalli H; Balakrishnan K; Botello-Mendez A; Vajtai R; Terrones M; Ajayan PM
    Small; 2011 Aug; 7(15):2173-8. PubMed ID: 21626690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients.
    Oh Y; Han JH; Kim H; Jeong N; Vermaas DA; Park JS; Chae S
    Environ Sci Technol; 2021 Aug; 55(16):11388-11396. PubMed ID: 34310128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.