These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 26768229)
1. Gait recording with inertial sensors--How to determine initial and terminal contact. Bötzel K; Marti FM; Rodríguez MÁ; Plate A; Vicente AO J Biomech; 2016 Feb; 49(3):332-7. PubMed ID: 26768229 [TBL] [Abstract][Full Text] [Related]
2. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. Mariani B; Rochat S; Büla CJ; Aminian K IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865 [TBL] [Abstract][Full Text] [Related]
3. Development and validity of methods for the estimation of temporal gait parameters from heel-attached inertial sensors in younger and older adults. Misu S; Asai T; Ono R; Sawa R; Tsutsumimoto K; Ando H; Doi T Gait Posture; 2017 Sep; 57():295-298. PubMed ID: 28686998 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of an accelerometer-based method for quantifying gait events. Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221 [TBL] [Abstract][Full Text] [Related]
5. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection. Kotiadis D; Hermens HJ; Veltink PH Med Eng Phys; 2010 May; 32(4):287-97. PubMed ID: 20153237 [TBL] [Abstract][Full Text] [Related]
6. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Ben Mansour K; Rezzoug N; Gorce P Gait Posture; 2015 Oct; 42(4):409-14. PubMed ID: 26341531 [TBL] [Abstract][Full Text] [Related]
7. The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units. Allseits E; Lučarević J; Gailey R; Agrawal V; Gaunaurd I; Bennett C J Biomech; 2017 Apr; 55():27-33. PubMed ID: 28302315 [TBL] [Abstract][Full Text] [Related]
8. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly. Micó-Amigo ME; Kingma I; Ainsworth E; Walgaard S; Niessen M; van Lummel RC; van Dieën JH J Neuroeng Rehabil; 2016 Apr; 13():38. PubMed ID: 27093956 [TBL] [Abstract][Full Text] [Related]
9. Classification of gait quality for biofeedback to improve heel-to-toe gait. Vadnerkar A; Figueiredo S; Mayo NE; Kearney RE Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3626-9. PubMed ID: 25570776 [TBL] [Abstract][Full Text] [Related]
10. Using horizontal heel displacement to identify heel strike instants in normal gait. Banks JJ; Chang WR; Xu X; Chang CC Gait Posture; 2015 Jun; 42(1):101-3. PubMed ID: 25907129 [TBL] [Abstract][Full Text] [Related]
11. Determination of toe-off event time during treadmill locomotion using kinematic data. De Witt JK J Biomech; 2010 Nov; 43(15):3067-9. PubMed ID: 20801452 [TBL] [Abstract][Full Text] [Related]
12. Assessment and validation of a simple automated method for the detection of gait events and intervals. Ghoussayni S; Stevens C; Durham S; Ewins D Gait Posture; 2004 Dec; 20(3):266-72. PubMed ID: 15531173 [TBL] [Abstract][Full Text] [Related]
13. Design and Validation of a Biofeedback Device to Improve Heel-to-Toe Gait in Seniors. Vadnerkar A; Figueiredo S; Mayo NE; Kearney RE IEEE J Biomed Health Inform; 2018 Jan; 22(1):140-146. PubMed ID: 28186914 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database. Khandelwal S; Wickström N Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735 [TBL] [Abstract][Full Text] [Related]
15. Detection of gait cycles in treadmill walking using a Kinect. Auvinet E; Multon F; Aubin CE; Meunier J; Raison M Gait Posture; 2015 Feb; 41(2):722-5. PubMed ID: 25442670 [TBL] [Abstract][Full Text] [Related]
16. Impact of Gait Events Identification through Wearable Inertial Sensors on Clinical Gait Analysis of Children with Idiopathic Toe Walking. Brasiliano P; Mascia G; Di Feo P; Di Stanislao E; Alvini M; Vannozzi G; Camomilla V Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837977 [TBL] [Abstract][Full Text] [Related]
17. The validity of assessing temporal events, sub-phases and trunk kinematics of the sit-to-walk movement in older adults using a single inertial sensor. Walgaard S; Faber GS; van Lummel RC; van Dieën JH; Kingma I J Biomech; 2016 Jun; 49(9):1933-1937. PubMed ID: 27017301 [TBL] [Abstract][Full Text] [Related]
18. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Fong DT; Mao DW; Li JX; Hong Y J Biomech; 2008; 41(4):838-44. PubMed ID: 18068710 [TBL] [Abstract][Full Text] [Related]
19. Instrumented gait analysis: a measure of gait improvement by a wheeled walker in hospitalized geriatric patients. Schülein S; Barth J; Rampp A; Rupprecht R; Eskofier BM; Winkler J; Gaßmann KG; Klucken J J Neuroeng Rehabil; 2017 Feb; 14(1):18. PubMed ID: 28241769 [TBL] [Abstract][Full Text] [Related]
20. Comparison of heel strike accelerations while walking on carpet, tile, and a motorized treadmill. Smothers CL; Ray JD; Wildman GC Crit Rev Biomed Eng; 2000; 28(1-2):225-30. PubMed ID: 10999392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]