These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26768333)

  • 1. Flying with the winds: differential migration strategies in relation to winds in moth and songbirds.
    Åkesson S
    J Anim Ecol; 2016 Jan; 85(1):1-4. PubMed ID: 26768333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T
    J Anim Ecol; 2016 Jan; 85(1):115-24. PubMed ID: 26147535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds.
    Alerstam T; Chapman JW; Bäckman J; Smith AD; Karlsson H; Nilsson C; Reynolds DR; Klaassen RH; Hill JK
    Proc Biol Sci; 2011 Oct; 278(1721):3074-80. PubMed ID: 21389024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of flow direction in high-flying insect and songbird migrants.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T; Reynolds AM
    Curr Biol; 2015 Aug; 25(17):R751-2. PubMed ID: 26325133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind.
    Sinelschikova A; Vorotkov M; Bulyuk V; Bolshakov C
    Behav Processes; 2020 Aug; 177():104154. PubMed ID: 32479841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nocturnally migrating songbirds drift when they can and compensate when they must.
    Horton KG; Van Doren BM; Stepanian PM; Hochachka WM; Farnsworth A; Kelly JF
    Sci Rep; 2016 Feb; 6():21249. PubMed ID: 26879152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting seasonal responses to wind in migrating songbirds on a globally important flyway.
    Schekler I; Levi Y; Sapir N
    Proc Biol Sci; 2024 Aug; 291(2027):20240875. PubMed ID: 39016113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird.
    Mitchell GW; Woodworth BK; Taylor PD; Norris DR
    Mov Ecol; 2015; 3(1):19. PubMed ID: 26279850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study.
    Sjöberg S; Nilsson C
    Biol Lett; 2015 Jun; 11(6):20150337. PubMed ID: 26085501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swainson's Thrushes do not show strong wind selectivity prior to crossing the Gulf of Mexico.
    Bolus RT; Diehl RH; Moore FR; Deppe JL; Ward MP; Smolinsky J; Zenzal TJ
    Sci Rep; 2017 Oct; 7(1):14280. PubMed ID: 29079749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projected changes in prevailing winds for transatlantic migratory birds under global warming.
    La Sorte FA; Fink D
    J Anim Ecol; 2017 Mar; 86(2):273-284. PubMed ID: 27973732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The problem of estimating wind drift in migrating birds.
    Green M; Alerstam T
    J Theor Biol; 2002 Oct; 218(4):485-96. PubMed ID: 12384051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects.
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    Proc Biol Sci; 2010 Mar; 277(1682):765-72. PubMed ID: 19889697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the US Great Plains low-level jet in nocturnal migrant behavior.
    Wainwright CE; Stepanian PM; Horton KG
    Int J Biometeorol; 2016 Oct; 60(10):1531-1542. PubMed ID: 26872654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme altitudes during diurnal flights in a nocturnal songbird migrant.
    Sjöberg S; Malmiga G; Nord A; Andersson A; Bäckman J; Tarka M; Willemoes M; Thorup K; Hansson B; Alerstam T; Hasselquist D
    Science; 2021 May; 372(6542):646-648. PubMed ID: 33958477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive strategies of high-flying migratory hoverflies in response to wind currents.
    Gao B; Wotton KR; Hawkes WLS; Menz MHM; Reynolds DR; Zhai BP; Hu G; Chapman JW
    Proc Biol Sci; 2020 Jun; 287(1928):20200406. PubMed ID: 32486972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.