These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 26768693)

  • 1. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it?
    Bianco J; De Berdt P; Deumens R; des Rieux A
    Cell Mol Life Sci; 2016 Apr; 73(7):1413-37. PubMed ID: 26768693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord regeneration using dental stem cell-based therapies.
    Xu Y; Chen M; Zhang T; Ma Y; Chen X; Zhou P; Zhao X; Pang F; Liang W
    Acta Neurobiol Exp (Wars); 2019; 79(4):319-327. PubMed ID: 31885389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of human dental stem cells in repairing the complete transection of rat spinal cord.
    Yang C; Li X; Sun L; Guo W; Tian W
    J Neural Eng; 2017 Apr; 14(2):026005. PubMed ID: 28085005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury.
    Yamamoto A; Sakai K; Matsubara K; Kano F; Ueda M
    Neurosci Res; 2014 Jan; 78():16-20. PubMed ID: 24252618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury.
    Bonaventura G; Incontro S; Iemmolo R; La Cognata V; Barbagallo I; Costanzo E; Barcellona ML; Pellitteri R; Cavallaro S
    Cell Tissue Res; 2020 Mar; 379(3):421-428. PubMed ID: 31776822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy.
    Zhang J; Lu X; Feng G; Gu Z; Sun Y; Bao G; Xu G; Lu Y; Chen J; Xu L; Feng X; Cui Z
    Cell Tissue Res; 2016 Oct; 366(1):129-42. PubMed ID: 27147262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem Cells-based and Molecular-based Approaches in Regenerative Dentistry: A Topical Review.
    Tatullo M; Codispoti B; Sied J; Makeeva I; Paduano F; Marrelli M; Spagnuolo G
    Curr Stem Cell Res Ther; 2019; 14(7):607-616. PubMed ID: 31271121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New strategies for repairing the injured spinal cord: the role of stem cells.
    Garbossa D; Fontanella M; Fronda C; Benevello C; Muraca G; Ducati A; Vercelli A
    Neurol Res; 2006 Jul; 28(5):500-4. PubMed ID: 16808879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications.
    Forostyak S; Jendelova P; Sykova E
    Biochimie; 2013 Dec; 95(12):2257-70. PubMed ID: 23994163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation.
    Kabatas S; Demir CS; Civelek E; Yilmaz I; Kircelli A; Yilmaz C; Akyuva Y; Karaoz E
    Bratisl Lek Listy; 2018; 119(3):143-151. PubMed ID: 29536742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury.
    Myckatyn TM; Mackinnon SE; McDonald JW
    Transpl Immunol; 2004 Apr; 12(3-4):343-58. PubMed ID: 15157926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine.
    Ma L; Makino Y; Yamaza H; Akiyama K; Hoshino Y; Song G; Kukita T; Nonaka K; Shi S; Yamaza T
    PLoS One; 2012; 7(12):e51777. PubMed ID: 23251621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem cells and spinal cord repair.
    Snyder EY; Teng YD
    N Engl J Med; 2012 May; 366(20):1940-2. PubMed ID: 22591301
    [No Abstract]   [Full Text] [Related]  

  • 14. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy.
    Cofano F; Boido M; Monticelli M; Zenga F; Ducati A; Vercelli A; Garbossa D
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31159345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Transplantation of neural stem cells into spinal cord after injury].
    Nakamura M; Toyama Y
    Nihon Rinsho; 2003 Mar; 61(3):463-8. PubMed ID: 12701174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury.
    Feitosa MLT; Sarmento CAP; Bocabello RZ; Beltrão-Braga PCB; Pignatari GC; Giglio RF; Miglino MA; Orlandin JR; Ambrósio CE
    Acta Cir Bras; 2017 Jul; 32(7):540-549. PubMed ID: 28793038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord.
    Yan J; Welsh AM; Bora SH; Snyder EY; Koliatsos VE
    J Comp Neurol; 2004 Nov; 480(1):101-14. PubMed ID: 15514921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural stem cells & supporting cells--the new therapeutic tools for the treatment of spinal cord injury.
    Paspala SA; Balaji AB; Nyamath P; Ahmed KS; Khan AA; Khaja MN; Narsu ML; Devi YP; Murthy TV; Habibullah CM
    Indian J Med Res; 2009 Oct; 130(4):379-91. PubMed ID: 19942740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration-based therapies for spinal cord injuries.
    Okano H; Kaneko S; Okada S; Iwanami A; Nakamura M; Toyama Y
    Neurochem Int; 2007; 51(2-4):68-73. PubMed ID: 17544171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repairing the injured spinal cord.
    Schwab ME
    Science; 2002 Feb; 295(5557):1029-31. PubMed ID: 11834824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.