These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26768844)

  • 1. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets.
    Aguirre LE; de Oliveira A; Seč D; Čopar S; Almeida PL; Ravnik M; Godinho MH; Žumer S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1174-9. PubMed ID: 26768844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly.
    Meirovitch S; Shtein Z; Ben-Shalom T; Lapidot S; Tamburu C; Hu X; Kluge JA; Raviv U; Kaplan DL; Shoseyov O
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27649169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Jul; 209(Pt 13):2452-61. PubMed ID: 16788028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of loading rate on mechanical properties and fracture morphology of spider silk.
    Hudspeth M; Nie X; Chen W; Lewis R
    Biomacromolecules; 2012 Aug; 13(8):2240-6. PubMed ID: 22780301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spider silk: understanding the structure-function relationship of a natural fiber.
    Humenik M; Scheibel T; Smith A
    Prog Mol Biol Transl Sci; 2011; 103():131-85. PubMed ID: 21999996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical surface profiling of orb-web spider capture silks.
    Kane DM; Joyce AM; Staib GR; Herberstein ME
    Bioinspir Biomim; 2010 Sep; 5(3):036004. PubMed ID: 20710068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wind induces variations in spider web geometry and sticky spiral droplet volume.
    Wu CC; Blamires SJ; Wu CL; Tso IM
    J Exp Biol; 2013 Sep; 216(Pt 17):3342-9. PubMed ID: 23737558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spider capture silk: performance implications of variation in an exceptional biomaterial.
    Swanson BO; Blackledge TA; Hayashi CY
    J Exp Zool A Ecol Genet Physiol; 2007 Nov; 307(11):654-66. PubMed ID: 17853401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hidden link between supercontraction and mechanical behavior of spider silks.
    Elices M; Plaza GR; Pérez-Rigueiro J; Guinea GV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):658-69. PubMed ID: 21565714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of Various Spider Silks in Regard to Nerve Regeneration: Material Properties and Schwann Cell Response.
    Stadlmayr S; Peter K; Millesi F; Rad A; Wolf S; Mero S; Zehl M; Mentler A; Gusenbauer C; Konnerth J; Schniepp HC; Lichtenegger H; Naghilou A; Radtke C
    Adv Healthc Mater; 2024 Mar; 13(8):e2302968. PubMed ID: 38079208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial interactions between spider silk protein and cellulose studied by molecular dynamics simulation.
    Zhao T; Ma H; Liu Y; Chen Z; Shi Q; Ning L
    J Mol Model; 2024 May; 30(5):156. PubMed ID: 38693294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter.
    Madurga R; Plaza GR; Blackledge TA; Guinea GV; Elices M; Pérez-Rigueiro J
    Sci Rep; 2016 Jan; 6():18991. PubMed ID: 26755434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering spider silk nanocrystalline variations that facilitate wind-induced mechanical property changes.
    Blamires SJ; Wu CC; Wu CL; Sheu HS; Tso IM
    Biomacromolecules; 2013 Oct; 14(10):3484-90. PubMed ID: 23947397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins.
    Heim M; Römer L; Scheibel T
    Chem Soc Rev; 2010 Jan; 39(1):156-64. PubMed ID: 20023846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.
    Guinea GV; Elices M; Pérez-Rigueiro J; Plaza GR
    J Exp Biol; 2005 Jan; 208(Pt 1):25-30. PubMed ID: 15601874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental confirmation of thermal transitions in native and regenerated spider silks.
    Torres FG; Troncoso OP; Torres C; Cabrejos W
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1432-7. PubMed ID: 23827592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
    Boutry C; Blackledge TA
    J Exp Biol; 2010 Oct; 213(Pt 20):3505-14. PubMed ID: 20889831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.