BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26769474)

  • 1. A bioluminescent arsenite biosensor designed for inline water analyzer.
    Prévéral S; Brutesco C; Descamps ECT; Escoffier C; Pignol D; Ginet N; Garcia D
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):25-32. PubMed ID: 26769474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.
    Brutesco C; Prévéral S; Escoffier C; Descamps ECT; Prudent E; Cayron J; Dumas L; Ricquebourg M; Adryanczyk-Perrier G; de Groot A; Garcia D; Rodrigue A; Pignol D; Ginet N
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):52-65. PubMed ID: 27234828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Whole-Cell Bacterial Biosensor for Blood Markers Detection in Urine.
    Barger N; Oren I; Li X; Habib M; Daniel R
    ACS Synth Biol; 2021 May; 10(5):1132-1142. PubMed ID: 33908255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water.
    Stocker J; Balluch D; Gsell M; Harms H; Feliciano J; Daunert S; Malik KA; van der Meer JR
    Environ Sci Technol; 2003 Oct; 37(20):4743-50. PubMed ID: 14594387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Rhodovulum sulfidophilum as an arsenite biosensor.
    Fujimoto H; Wakabayashi M; Yamashiro H; Maeda I; Isoda K; Kondoh M; Kawase M; Miyasaka H; Yagi K
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):332-8. PubMed ID: 16733729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Highly Sensitive Whole-Cell Biosensor for Arsenite Detection through Engineered Promoter Modifications.
    Chen SY; Wei W; Yin BC; Tong Y; Lu J; Ye BC
    ACS Synth Biol; 2019 Oct; 8(10):2295-2302. PubMed ID: 31525958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Sensitive Magnetic Arsenite-Specific Biosensor Hosted in Magnetotactic Bacteria.
    Dieudonné A; Prévéral S; Pignol D
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32385084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolved bacterial biosensor for arsenite detection in environmental water.
    Li L; Liang J; Hong W; Zhao Y; Sun S; Yang X; Xu A; Hang H; Wu L; Chen S
    Environ Sci Technol; 2015 May; 49(10):6149-55. PubMed ID: 25902341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity.
    Fang Y; Zhu C; Chen X; Wang Y; Xu M; Sun G; Guo J; Yoo J; Tie C; Jiang X; Li X
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5753-5761. PubMed ID: 29766244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon.
    Yagur-Kroll S; Belkin S
    Anal Bioanal Chem; 2011 May; 400(4):1071-82. PubMed ID: 20949260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance.
    Fu YJ; Chen WL; Huang QY
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):363-70. PubMed ID: 18437376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strongly enhanced bacterial bioluminescence with the
    Gregor C; Gwosch KC; Sahl SJ; Hell SW
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):962-967. PubMed ID: 29339494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of salts on luminescence of natural and recombinant luminescent bacterial biosensors].
    Deriabin DG; Aleshina ES
    Prikl Biokhim Mikrobiol; 2008; 44(3):324-9. PubMed ID: 18663957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Inducible specific lux-biosensors for the detection of antibiotics: construction and main parameters].
    Kotova VIu; Ryzhenkova KV; Manukhov IV; Zavil'gel'skiĭ GB
    Prikl Biokhim Mikrobiol; 2014; 50(1):112-7. PubMed ID: 25272761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pushing the limits of nickel detection to nanomolar range using a set of engineered bioluminescent Escherichia coli.
    Cayron J; Prudent E; Escoffier C; Gueguen E; Mandrand-Berthelot MA; Pignol D; Garcia D; Rodrigue A
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):4-14. PubMed ID: 26498802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Luciferase Gene Cassette as a Real-time Bioreporter for Infection Model and Drug Evaluation.
    Wang X; Chi H; Zhou B; Li W; Li Z; Xia Z
    Curr Pharm Des; 2018; 24(8):952-958. PubMed ID: 29436995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The construction and application of a lux-based nitrate biosensor.
    Prest AG; Winson MK; Hammond JR; Stewart GS
    Lett Appl Microbiol; 1997 May; 24(5):355-60. PubMed ID: 9172442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment.
    de Las Heras A; de Lorenzo V
    Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267.
    Rosenstein R; Peschel A; Wieland B; Götz F
    J Bacteriol; 1992 Jun; 174(11):3676-83. PubMed ID: 1534327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.
    Xu T; Ripp S; Sayler GS; Close DM
    PLoS One; 2014; 9(5):e96347. PubMed ID: 24788811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.