These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26769474)

  • 41. Electrochemical As(III) whole-cell based biochip sensor.
    Cortés-Salazar F; Beggah S; van der Meer JR; Girault HH
    Biosens Bioelectron; 2013 Sep; 47():237-42. PubMed ID: 23584229
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria.
    Virolainen NE; Pikkemaat MG; Elferink JW; Karp MT
    J Agric Food Chem; 2008 Dec; 56(23):11065-70. PubMed ID: 18998699
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of a luminescent bacterial biosensor for the detection of tetracyclines in routine analysis of poultry muscle samples.
    Pikkemaat MG; Rapallini ML; Karp MT; Elferink JW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Aug; 27(8):1112-7. PubMed ID: 20496184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ars operon of Escherichia coli confers arsenical and antimonial resistance.
    Carlin A; Shi W; Dey S; Rosen BP
    J Bacteriol; 1995 Feb; 177(4):981-6. PubMed ID: 7860609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria.
    Choi SH; Gu MB
    Biosens Bioelectron; 2002 May; 17(5):433-40. PubMed ID: 11888734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of Bacterial Luciferase as a Reporter Gene in Eukaryotic Systems.
    Phonbuppha J; Tinikul R; Chaiyen P
    Methods Mol Biol; 2021; 2274():53-65. PubMed ID: 34050462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite.
    Scott DL; Ramanathan S; Shi W; Rosen BP; Daunert S
    Anal Chem; 1997 Jan; 69(1):16-20. PubMed ID: 8990978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioluminescent reporter genes for promoter discovery.
    Van Dyk TK
    Methods Mol Biol; 2012; 834():87-92. PubMed ID: 22144355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tn5/7-lux: a versatile tool for the identification and capture of promoters in gram-negative bacteria.
    Bruckbauer ST; Kvitko BH; Karkhoff-Schweizer RR; Schweizer HP
    BMC Microbiol; 2015 Feb; 15(1):17. PubMed ID: 25648327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors.
    Riether KB; Dollard MA; Billard P
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):712-6. PubMed ID: 11778883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria.
    Craney A; Hohenauer T; Xu Y; Navani NK; Li Y; Nodwell J
    Nucleic Acids Res; 2007; 35(6):e46. PubMed ID: 17337439
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors.
    Jouanneau S; Durand MJ; Thouand G
    Environ Sci Technol; 2012 Nov; 46(21):11979-87. PubMed ID: 22989292
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of the multi-channel continuous monitoring system through the use of Xenorhabdus luminescens lux fusions.
    Lee JH; Mitchell RJ; Gu MB
    Biosens Bioelectron; 2004 Oct; 20(3):475-81. PubMed ID: 15494228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of genes encoding the luciferase from Photobacterium leiognathi in Escherichia coli Rosetta (DE3) and its application in NADH detection.
    Xuan G; Xiao Q; Wang J; Lin H; Pavase T
    Luminescence; 2018 Sep; 33(6):1010-1018. PubMed ID: 29920921
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reconstructing promoter activity from Lux bioluminescent reporters.
    Iqbal M; Doherty N; Page AML; Qazi SNA; Ajmera I; Lund PA; Kypraios T; Scott DJ; Hill PJ; Stekel DJ
    PLoS Comput Biol; 2017 Sep; 13(9):e1005731. PubMed ID: 28922354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium Achromobacter sp. AO22.
    Ng SP; Palombo EA; Bhave M
    World J Microbiol Biotechnol; 2012 May; 28(5):2221-8. PubMed ID: 22806045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Substrate-independent luminescent phage-based biosensor to specifically detect enteric bacteria such as E. coli.
    Franche N; Vinay M; Ansaldi M
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):42-51. PubMed ID: 26903133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria.
    Diorio C; Cai J; Marmor J; Shinder R; DuBow MS
    J Bacteriol; 1995 Apr; 177(8):2050-6. PubMed ID: 7721697
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a whole-cell biosensor based on an ArsR-P
    Li P; Wang Y; Yuan X; Liu X; Liu C; Fu X; Sun D; Dang Y; Holmes DE
    Environ Sci Ecotechnol; 2021 Apr; 6():100092. PubMed ID: 36159180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.