BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26769557)

  • 1. Accurate and semi-automated analysis of bacterial association with mammalian cells.
    Murphy CM; Paré S; Galea G; Simpson JC; Smith SG
    J Microbiol Methods; 2016 Mar; 122():8-12. PubMed ID: 26769557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular Imaging of Intracellular Bacterial Pathogens.
    Stévenin V; Enninga J
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30953426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of host-microbe interactions by automated fluorescence microscopy.
    Haghighat AC; Seveau S
    J Immunol Methods; 2010 Jan; 352(1-2):186-91. PubMed ID: 19931271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a genetically encoded green fluorescent protein mutant for sensitive light-up fluorescent sensing and cellular imaging of Hg(II).
    Jiang T; Guo D; Wang Q; Wu X; Li Z; Zheng Z; Yin B; Xia L; Tang J; Luo W; Xia N; Jiang Y
    Anal Chim Acta; 2015 May; 876():77-82. PubMed ID: 25998461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GFP: from jellyfish to the Nobel prize and beyond.
    Zimmer M
    Chem Soc Rev; 2009 Oct; 38(10):2823-32. PubMed ID: 19771329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective recognition of bacterial membranes by zinc(II)-coordination complexes.
    Leevy WM; Johnson JR; Lakshmi C; Morris J; Marquez M; Smith BD
    Chem Commun (Camb); 2006 Apr; (15):1595-7. PubMed ID: 16582990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic quantification of bacterial invasion by a novel antibody-independent staining method.
    Agerer F; Waeckerle S; Hauck CR
    J Microbiol Methods; 2004 Oct; 59(1):23-32. PubMed ID: 15325750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Fluorescence Microscopy for the Analysis of Fast Receptor Dynamics.
    Wagner J; Sungkaworn T; Heinze KG; Lohse MJ; Calebiro D
    Methods Mol Biol; 2015; 1335():53-66. PubMed ID: 26260594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeling of the pathogenic bacterium Staphylococcus aureus with gold or ferric oxide-core nanoparticles highlights new capabilities for investigation of host-pathogen interactions.
    Depke M; Surmann K; Hildebrandt P; Jehmlich N; Michalik S; Stanca SE; Fritzsche W; Völker U; Schmidt F
    Cytometry A; 2014 Feb; 85(2):140-50. PubMed ID: 24347542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live imaging of the genetically intractable obligate intracellular bacteria Orientia tsutsugamushi using a panel of fluorescent dyes.
    Atwal S; Giengkam S; VanNieuwenhze M; Salje J
    J Microbiol Methods; 2016 Nov; 130():169-176. PubMed ID: 27582280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of SNAP-tag-mediated live cell labeling as an alternative to GFP in Porphyromonas gingivalis.
    Nicolle O; Rouillon A; Guyodo H; Tamanai-Shacoori Z; Chandad F; Meuric V; Bonnaure-Mallet M
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):357-63. PubMed ID: 20482622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders.
    Platonova E; Winterflood CM; Junemann A; Albrecht D; Faix J; Ewers H
    Methods; 2015 Oct; 88():89-97. PubMed ID: 26123185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of cell infection caused by Listeria monocytogenes invasion.
    Arif M; Rajpoot NM; Nattkemper TW; Technow U; Chakraborty T; Fisch N; Jensen NA; Niehaus K
    J Biotechnol; 2011 Jun; 154(1):76-83. PubMed ID: 21527293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene.
    Pinheiro LB; Gibbs MD; Vesey G; Smith JJ; Bergquist PL
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1287-95. PubMed ID: 17994234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent staining of bacteria: viability and antibody labeling.
    Moyes RB
    Curr Protoc Microbiol; 2009 Nov; Appendix 3():Appendix 3K. PubMed ID: 19885938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive method to quantify local bacterial concentrations in a mixed culture biofilm.
    Ma H; Bryers JD
    J Ind Microbiol Biotechnol; 2010 Oct; 37(10):1081-9. PubMed ID: 20552252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for studying RNA localization in bacteria.
    Kannaiah S; Amster-Choder O
    Methods; 2016 Apr; 98():99-103. PubMed ID: 26707207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.
    Stylianidou S; Brennan C; Nissen SB; Kuwada NJ; Wiggins PA
    Mol Microbiol; 2016 Nov; 102(4):690-700. PubMed ID: 27569113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule imaging of fluorescent proteins expressed in living cells.
    Hibino K; Hiroshima M; Takahashi M; Sako Y
    Methods Mol Biol; 2009; 544():451-60. PubMed ID: 19488718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.