These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26769557)

  • 1. Accurate and semi-automated analysis of bacterial association with mammalian cells.
    Murphy CM; Paré S; Galea G; Simpson JC; Smith SG
    J Microbiol Methods; 2016 Mar; 122():8-12. PubMed ID: 26769557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular Imaging of Intracellular Bacterial Pathogens.
    Stévenin V; Enninga J
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30953426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of host-microbe interactions by automated fluorescence microscopy.
    Haghighat AC; Seveau S
    J Immunol Methods; 2010 Jan; 352(1-2):186-91. PubMed ID: 19931271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a genetically encoded green fluorescent protein mutant for sensitive light-up fluorescent sensing and cellular imaging of Hg(II).
    Jiang T; Guo D; Wang Q; Wu X; Li Z; Zheng Z; Yin B; Xia L; Tang J; Luo W; Xia N; Jiang Y
    Anal Chim Acta; 2015 May; 876():77-82. PubMed ID: 25998461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GFP: from jellyfish to the Nobel prize and beyond.
    Zimmer M
    Chem Soc Rev; 2009 Oct; 38(10):2823-32. PubMed ID: 19771329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective recognition of bacterial membranes by zinc(II)-coordination complexes.
    Leevy WM; Johnson JR; Lakshmi C; Morris J; Marquez M; Smith BD
    Chem Commun (Camb); 2006 Apr; (15):1595-7. PubMed ID: 16582990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic quantification of bacterial invasion by a novel antibody-independent staining method.
    Agerer F; Waeckerle S; Hauck CR
    J Microbiol Methods; 2004 Oct; 59(1):23-32. PubMed ID: 15325750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Fluorescence Microscopy for the Analysis of Fast Receptor Dynamics.
    Wagner J; Sungkaworn T; Heinze KG; Lohse MJ; Calebiro D
    Methods Mol Biol; 2015; 1335():53-66. PubMed ID: 26260594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeling of the pathogenic bacterium Staphylococcus aureus with gold or ferric oxide-core nanoparticles highlights new capabilities for investigation of host-pathogen interactions.
    Depke M; Surmann K; Hildebrandt P; Jehmlich N; Michalik S; Stanca SE; Fritzsche W; Völker U; Schmidt F
    Cytometry A; 2014 Feb; 85(2):140-50. PubMed ID: 24347542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live imaging of the genetically intractable obligate intracellular bacteria Orientia tsutsugamushi using a panel of fluorescent dyes.
    Atwal S; Giengkam S; VanNieuwenhze M; Salje J
    J Microbiol Methods; 2016 Nov; 130():169-176. PubMed ID: 27582280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of SNAP-tag-mediated live cell labeling as an alternative to GFP in Porphyromonas gingivalis.
    Nicolle O; Rouillon A; Guyodo H; Tamanai-Shacoori Z; Chandad F; Meuric V; Bonnaure-Mallet M
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):357-63. PubMed ID: 20482622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders.
    Platonova E; Winterflood CM; Junemann A; Albrecht D; Faix J; Ewers H
    Methods; 2015 Oct; 88():89-97. PubMed ID: 26123185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of cell infection caused by Listeria monocytogenes invasion.
    Arif M; Rajpoot NM; Nattkemper TW; Technow U; Chakraborty T; Fisch N; Jensen NA; Niehaus K
    J Biotechnol; 2011 Jun; 154(1):76-83. PubMed ID: 21527293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene.
    Pinheiro LB; Gibbs MD; Vesey G; Smith JJ; Bergquist PL
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1287-95. PubMed ID: 17994234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent staining of bacteria: viability and antibody labeling.
    Moyes RB
    Curr Protoc Microbiol; 2009 Nov; Appendix 3():Appendix 3K. PubMed ID: 19885938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive method to quantify local bacterial concentrations in a mixed culture biofilm.
    Ma H; Bryers JD
    J Ind Microbiol Biotechnol; 2010 Oct; 37(10):1081-9. PubMed ID: 20552252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for studying RNA localization in bacteria.
    Kannaiah S; Amster-Choder O
    Methods; 2016 Apr; 98():99-103. PubMed ID: 26707207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.
    Stylianidou S; Brennan C; Nissen SB; Kuwada NJ; Wiggins PA
    Mol Microbiol; 2016 Nov; 102(4):690-700. PubMed ID: 27569113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule imaging of fluorescent proteins expressed in living cells.
    Hibino K; Hiroshima M; Takahashi M; Sako Y
    Methods Mol Biol; 2009; 544():451-60. PubMed ID: 19488718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.