These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 26769567)

  • 1. Antisense transcription as a tool to tune gene expression.
    Brophy JA; Voigt CA
    Mol Syst Biol; 2016 Jan; 12(1):854. PubMed ID: 26769567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional Interference in Convergent Promoters as a Means for Tunable Gene Expression.
    Bordoy AE; Varanasi US; Courtney CM; Chatterjee A
    ACS Synth Biol; 2016 Dec; 5(12):1331-1341. PubMed ID: 27346626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional Interference in Toehold Switch-Based RNA Circuits.
    Falgenhauer E; Mückl A; Schwarz-Schilling M; Simmel FC
    ACS Synth Biol; 2022 May; 11(5):1735-1745. PubMed ID: 35412304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Transcriptional Interference through RNA Polymerase Processivity Control.
    O'Connor NJ; Bordoy AE; Chatterjee A
    ACS Synth Biol; 2021 Apr; 10(4):737-748. PubMed ID: 33710852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic circuit characterization and debugging using RNA-seq.
    Gorochowski TE; Espah Borujeni A; Park Y; Nielsen AA; Zhang J; Der BS; Gordon DB; Voigt CA
    Mol Syst Biol; 2017 Nov; 13(11):952. PubMed ID: 29122925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach.
    Bordoy AE; Chatterjee A
    PLoS One; 2015; 10(7):e0133873. PubMed ID: 26222133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Design Rules for Reliable Antisense RNA Behavior in E. coli.
    Hoynes-O'Connor A; Moon TS
    ACS Synth Biol; 2016 Dec; 5(12):1441-1454. PubMed ID: 27434774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulated transcriptional elements enable precise design of genetic circuits.
    Zong Y; Zhang HM; Lyu C; Ji X; Hou J; Guo X; Ouyang Q; Lou C
    Nat Commun; 2017 Jul; 8(1):52. PubMed ID: 28674389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing Transcriptional Interference between Converging Genes in Bacteria.
    Hoffmann SA; Hao N; Shearwin KE; Arndt KM
    ACS Synth Biol; 2019 Mar; 8(3):466-473. PubMed ID: 30717589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile RNA-sensing transcriptional regulators for engineering genetic networks.
    Lucks JB; Qi L; Mutalik VK; Wang D; Arkin AP
    Proc Natl Acad Sci U S A; 2011 May; 108(21):8617-22. PubMed ID: 21555549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GreA and GreB Enhance Expression of Escherichia coli RNA Polymerase Promoters in a Reconstituted Transcription-Translation System.
    Maddalena LL; Niederholtmeyer H; Turtola M; Swank ZN; Belogurov GA; Maerkl SJ
    ACS Synth Biol; 2016 Sep; 5(9):929-35. PubMed ID: 27186988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An antisense transcript from within the ptsG promoter region in Escherichia coli.
    Pennetier C; Oberto J; Plumbridge J
    J Mol Microbiol Biotechnol; 2010; 18(4):230-40. PubMed ID: 20668389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of an Antisense Small RNA.
    Rodrigo G; Prakash S; Cordero T; Kushwaha M; Jaramillo A
    J Mol Biol; 2016 Feb; 428(5 Pt B):889-92. PubMed ID: 26756967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage.
    Espah Borujeni A; Zhang J; Doosthosseini H; Nielsen AAK; Voigt CA
    Nat Commun; 2020 Oct; 11(1):5001. PubMed ID: 33020480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.
    Dawid A; Cayrol B; Isambert H
    Phys Biol; 2009 Jul; 6(2):025007. PubMed ID: 19571368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Two-Input Logic Gates Using Transcriptional Interference.
    Bordoy AE; O'Connor NJ; Chatterjee A
    ACS Synth Biol; 2019 Oct; 8(10):2428-2441. PubMed ID: 31532632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving large dynamic range control of gene expression with a compact RNA transcription-translation regulator.
    Westbrook AM; Lucks JB
    Nucleic Acids Res; 2017 May; 45(9):5614-5624. PubMed ID: 28387839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent transcription in the butyrolactone regulon in Streptomyces coelicolor confers a bistable genetic switch for antibiotic biosynthesis.
    Chatterjee A; Drews L; Mehra S; Takano E; Kaznessis YN; Hu WS
    PLoS One; 2011; 6(7):e21974. PubMed ID: 21765930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic circuit design automation for yeast.
    Chen Y; Zhang S; Young EM; Jones TS; Densmore D; Voigt CA
    Nat Microbiol; 2020 Nov; 5(11):1349-1360. PubMed ID: 32747797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Aspirin-Inducible Biosensors in
    Chen JX; Steel H; Wu YH; Wang Y; Xu J; Rampley CPN; Thompson IP; Papachristodoulou A; Huang WE
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.