BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26769848)

  • 1. Targeted near infrared hyperthermia combined with immune stimulation for optimized therapeutic efficacy in thyroid cancer treatment.
    Zhou L; Zhang M; Fu Q; Li J; Sun H
    Oncotarget; 2016 Feb; 7(6):6878-90. PubMed ID: 26769848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock treatment of tumor lysate-pulsed dendritic cells enhances their capacity to elicit antitumor T cell responses against medullary thyroid carcinoma.
    Bachleitner-Hofmann T; Strohschneider M; Krieger P; Sachet M; Dubsky P; Hayden H; Schoppmann SF; Pfragner R; Gnant M; Friedl J; Stift A
    J Clin Endocrinol Metab; 2006 Nov; 91(11):4571-7. PubMed ID: 16954161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitization of human Ewing's tumor cells to chemotherapy and heat treatment by the bioflavonoid quercetin.
    Debes A; Oerding M; Willers R; Göbel U; Wessalowski R
    Anticancer Res; 2003; 23(4):3359-66. PubMed ID: 12926076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quercetin liposome sensitizes colon carcinoma to thermotherapy and thermochemotherapy in mice models.
    He B; Wang X; Shi HS; Xiao WJ; Zhang J; Mu B; Mao YQ; Wang W; Wang YS
    Integr Cancer Ther; 2013 May; 12(3):264-70. PubMed ID: 22740083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamins K1 and K2 potentiate hyperthermia by down-regulating Hsp72 expression in vitro and in vivo.
    Shimohara S; Murakami T; Morikawa M; Matsuo J; Nagayama S; Shuto T; Suico MA; Okiyoneda T; Yamatsu I; Mizushima T; Shimasaki T; Kai H
    Int J Oncol; 2005 Dec; 27(6):1527-33. PubMed ID: 16273208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the rate of heating: a potential therapeutic approach for achieving synergistic tumour killing in combined hyperthermia and chemotherapy.
    Tang Y; McGoron AJ
    Int J Hyperthermia; 2013; 29(2):145-55. PubMed ID: 23350792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy.
    Ali MR; Ali HR; Rankin CR; El-Sayed MA
    Biomaterials; 2016 Sep; 102():1-8. PubMed ID: 27318931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute acidification or amiloride treatment suppresses the ability of Hsp70 to inhibit heat-induced apoptosis.
    Lachapelle G; Radicioni SM; Stankiewicz AR; Mosser DD
    Apoptosis; 2007 Aug; 12(8):1479-88. PubMed ID: 17431790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer.
    Rossi A; Ciafrè S; Balsamo M; Pierimarchi P; Santoro MG
    Cancer Res; 2006 Aug; 66(15):7678-85. PubMed ID: 16885369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell line-specific efficacy of thermoradiotherapy in human and canine cancer cells in vitro.
    Nytko KJ; Thumser-Henner P; Weyland MS; Scheidegger S; Rohrer Bley C
    PLoS One; 2019; 14(5):e0216744. PubMed ID: 31091255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local tumour hyperthermia as immunotherapy for metastatic cancer.
    Toraya-Brown S; Fiering S
    Int J Hyperthermia; 2014 Dec; 30(8):531-9. PubMed ID: 25430985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synergistic reversal effect of multidrug resistance by quercetin and hyperthermia in doxorubicin-resistant human myelogenous leukemia cells.
    Shen J; Zhang W; Wu J; Zhu Y
    Int J Hyperthermia; 2008 Mar; 24(2):151-9. PubMed ID: 18283591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared fluorescing IR820-chitosan conjugate for multifunctional cancer theranostic applications.
    Srinivasan S; Manchanda R; Fernandez-Fernandez A; Lei T; McGoron AJ
    J Photochem Photobiol B; 2013 Feb; 119():52-9. PubMed ID: 23347965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced tumour uptake of radiolabelled antibodies by hyperthermia: Part I: Timing of injection relative to hyperthermia.
    Hauck ML; Zalutsky MR
    Int J Hyperthermia; 2005 Feb; 21(1):1-11. PubMed ID: 15764347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative treatment of rectal cancer with radiation, chemotherapy and hyperthermia: analysis of treatment efficacy and heat-shock response.
    Rau B; Gaestel M; Wust P; Stahl J; Mansmann U; Schlag PM; Benndorf R
    Radiat Res; 1999 Apr; 151(4):479-88. PubMed ID: 10190501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthermia potentiates oncolytic herpes viral killing of pancreatic cancer through a heat shock protein pathway.
    Eisenberg DP; Carpenter SG; Adusumilli PS; Chan MK; Hendershott KJ; Yu Z; Fong Y
    Surgery; 2010 Aug; 148(2):325-34. PubMed ID: 20633729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.
    Wang L; Dong J; Ouyang W; Wang X; Tang J
    Oncol Rep; 2012 Mar; 27(3):719-26. PubMed ID: 22134718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blocking HSF1 by dominant-negative mutant to sensitize tumor cells to hyperthermia.
    Wang JH; Yao MZ; Gu JF; Sun LY; Shen YF; Liu XY
    Biochem Biophys Res Commun; 2002 Feb; 290(5):1454-61. PubMed ID: 11820785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity.
    Lauber K; Brix N; Ernst A; Hennel R; Krombach J; Anders H; Belka C
    Cancer Lett; 2015 Nov; 368(2):209-29. PubMed ID: 25754814
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Court KA; Hatakeyama H; Wu SY; Lingegowda MS; Rodríguez-Aguayo C; López-Berestein G; Ju-Seog L; Rinaldi C; Juan EJ; Sood AK; Torres-Lugo M
    Mol Cancer Ther; 2017 May; 16(5):966-976. PubMed ID: 28223424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.