These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26769855)

  • 1. Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron.
    Monachello D; Michel F; Costa M
    RNA; 2016 Mar; 22(3):443-55. PubMed ID: 26769855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transitions between the steps of forward and reverse splicing of group IIC introns.
    Smathers CM; Robart AR
    RNA; 2020 May; 26(5):664-673. PubMed ID: 32127385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of a group II intron lariat primed for reverse splicing.
    Costa M; Walbott H; Monachello D; Westhof E; Michel F
    Science; 2016 Dec; 354(6316):. PubMed ID: 27934709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Highly Proliferative Group IIC Intron from Geobacillus stearothermophilus Reveals New Features of Group II Intron Mobility and Splicing.
    Mohr G; Kang SY; Park SK; Qin Y; Grohman J; Yao J; Stamos JL; Lambowitz AM
    J Mol Biol; 2018 Aug; 430(17):2760-2783. PubMed ID: 29913158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking the branchpoint helix to a newly found receptor allows lariat formation by a group II intron.
    Li CF; Costa M; Michel F
    EMBO J; 2011 Jun; 30(15):3040-51. PubMed ID: 21712813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains.
    Ostersetzer O; Cooke AM; Watkins KP; Barkan A
    Plant Cell; 2005 Jan; 17(1):241-55. PubMed ID: 15598799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-splicing of a group IIC intron: 5' exon recognition and alternative 5' splicing events implicate the stem-loop motif of a transcriptional terminator.
    Toor N; Robart AR; Christianson J; Zimmerly S
    Nucleic Acids Res; 2006; 34(22):6461-71. PubMed ID: 17130159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group II introns in wheat mitochondria have degenerate structural features and varied splicing pathways.
    Ngu M; Massel K; Bonen L
    Int J Biochem Cell Biol; 2017 Oct; 91(Pt B):156-167. PubMed ID: 28495309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple tertiary interactions involving domain II of group II self-splicing introns.
    Costa M; Déme E; Jacquier A; Michel F
    J Mol Biol; 1997 Apr; 267(3):520-36. PubMed ID: 9126835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent insertion of 5'-terminal nucleotides and loss of the branchpoint motif in lineages of group II introns inserted in mitochondrial preribosomal RNAs.
    Li CF; Costa M; Bassi G; Lai YK; Michel F
    RNA; 2011 Jul; 17(7):1321-35. PubMed ID: 21613530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A maturase-encoding group IIA intron of yeast mitochondria self-splices in vitro.
    Hebbar SK; Belcher SM; Perlman PS
    Nucleic Acids Res; 1992 Apr; 20(7):1747-54. PubMed ID: 1579468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse splicing of a mobile twin-ribozyme group I intron into the natural small subunit rRNA insertion site.
    Birgisdottir AB; Johansen SD
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):482-4. PubMed ID: 15916547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing.
    Vogel J; Börner T
    EMBO J; 2002 Jul; 21(14):3794-803. PubMed ID: 12110591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations at the lariat acceptor site allow self-splicing of a group II intron without lariat formation.
    van der Veen R; Kwakman JH; Grivell LA
    EMBO J; 1987 Dec; 6(12):3827-31. PubMed ID: 2828039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA.
    Birgisdottir AB; Johansen S
    Nucleic Acids Res; 2005; 33(6):2042-51. PubMed ID: 15817568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.