BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 2677024)

  • 1. The role of cytoskeleton in organizing growth cones: a microfilament-associated growth cone component depends upon microtubules for its localization.
    Goslin K; Birgbauer E; Banker G; Solomon F
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1621-31. PubMed ID: 2677024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfilament-associated growth cone component depends upon Tau for its intracellular localization.
    DiTella M; Feiguin F; Morfini G; Cáceres A
    Cell Motil Cytoskeleton; 1994; 29(2):117-30. PubMed ID: 7820862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of ezrin isoforms with the neuronal cytoskeleton.
    Birgbauer E; Dinsmore JH; Winckler B; Lander AD; Solomon F
    J Neurosci Res; 1991 Sep; 30(1):232-41. PubMed ID: 1795406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a cortical cytoskeletal structure: a role for ezrin-radixin-moesin (ERM proteins) in the marginal band of chicken erythrocytes.
    Winckler B; González Agosti C; Magendantz M; Solomon F
    J Cell Sci; 1994 Sep; 107 ( Pt 9)():2523-34. PubMed ID: 7531201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins.
    Birgbauer E; Solomon F
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1609-20. PubMed ID: 2677023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: a novel form of axonal transport?
    Ruthel G; Banker G
    Cell Motil Cytoskeleton; 1998; 40(2):160-73. PubMed ID: 9634213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The organization of myosin and actin in rapid frozen nerve growth cones.
    Bridgman PC; Dailey ME
    J Cell Biol; 1989 Jan; 108(1):95-109. PubMed ID: 2642912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin disruption alters the localization of tau in the growth cones of cerebellar granule neurons.
    Zmuda JF; Rivas RJ
    J Cell Sci; 2000 Aug; 113 ( Pt 15)():2797-809. PubMed ID: 10893194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone.
    Forscher P; Smith SJ
    J Cell Biol; 1988 Oct; 107(4):1505-16. PubMed ID: 3170637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor.
    Fan J; Mansfield SG; Redmond T; Gordon-Weeks PR; Raper JA
    J Cell Biol; 1993 May; 121(4):867-78. PubMed ID: 8491778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a differentiated microtubule structure: formation of the chicken erythrocyte marginal band in vivo.
    Kim S; Magendantz M; Katz W; Solomon F
    J Cell Biol; 1987 Jan; 104(1):51-9. PubMed ID: 3793761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center.
    Rumsby M; Afsari F; Stark M; Hughson E
    Glia; 2003 Apr; 42(2):118-29. PubMed ID: 12655596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity.
    Bornens M; Paintrand M; Celati C
    J Cell Biol; 1989 Sep; 109(3):1071-83. PubMed ID: 2570076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule and Rac 1-dependent F-actin in growth cones.
    Grabham PW; Reznik B; Goldberg DJ
    J Cell Sci; 2003 Sep; 116(Pt 18):3739-48. PubMed ID: 12890754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner.
    Kempf M; Clement A; Faissner A; Lee G; Brandt R
    J Neurosci; 1996 Sep; 16(18):5583-92. PubMed ID: 8795614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The teleost cone cytoskeleton. Localization of actin, microtubules, and intermediate filaments.
    Nagle BW; Okamoto C; Taggart B; Burnside B
    Invest Ophthalmol Vis Sci; 1986 May; 27(5):689-701. PubMed ID: 3700018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcineurin is associated with the cytoskeleton of cultured neurons and has a role in the acquisition of polarity.
    Ferreira A; Kincaid R; Kosik KS
    Mol Biol Cell; 1993 Dec; 4(12):1225-38. PubMed ID: 8167406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axon branching requires interactions between dynamic microtubules and actin filaments.
    Dent EW; Kalil K
    J Neurosci; 2001 Dec; 21(24):9757-69. PubMed ID: 11739584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential localization of the neurofibromatosis 1 (NF1) gene product, neurofibromin, with the F-actin or microtubule cytoskeleton during differentiation of telencephalic neurons.
    Li C; Cheng Y; Gutmann DA; Mangoura D
    Brain Res Dev Brain Res; 2001 Oct; 130(2):231-48. PubMed ID: 11675125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.