These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26771089)

  • 1. MapMaker and PathTracer for tracking carbon in genome-scale metabolic models.
    Tervo CJ; Reed JL
    Biotechnol J; 2016 May; 11(5):648-61. PubMed ID: 26771089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli.
    Hädicke O; von Kamp A; Aydogan T; Klamt S
    PLoS Comput Biol; 2018 Sep; 14(9):e1006492. PubMed ID: 30248096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grid-based computational methods for the design of constraint-based parsimonious chemical reaction networks to simulate metabolite production: GridProd.
    Tamura T
    BMC Bioinformatics; 2018 Sep; 19(1):325. PubMed ID: 30217144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing the essence of a metabolic network: a flux balance analysis approach.
    Murabito E; Simeonidis E; Smallbone K; Swinton J
    J Theor Biol; 2009 Oct; 260(3):445-52. PubMed ID: 19540851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refining carbon flux paths using atomic trace data.
    Pey J; Planes FJ; Beasley JE
    Bioinformatics; 2014 Apr; 30(7):975-80. PubMed ID: 24273244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the accuracy of flux balance analysis through the implementation of carbon availability constraints for intracellular reactions.
    Lularevic M; Racher AJ; Jaques C; Kiparissides A
    Biotechnol Bioeng; 2019 Sep; 116(9):2339-2352. PubMed ID: 31112296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flux imbalance analysis and the sensitivity of cellular growth to changes in metabolite pools.
    Reznik E; Mehta P; Segrè D
    PLoS Comput Biol; 2013; 9(8):e1003195. PubMed ID: 24009492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of an E. Coli genome-scale atom mapping model for MFA calculations.
    Ravikirthi P; Suthers PF; Maranas CD
    Biotechnol Bioeng; 2011 Jun; 108(6):1372-82. PubMed ID: 21328316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models.
    Erdrich P; Steuer R; Klamt S
    BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring branching pathways in genome-scale metabolic networks.
    Pitkänen E; Jouhten P; Rousu J
    BMC Syst Biol; 2009 Oct; 3():103. PubMed ID: 19874610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic construction of metabolic models with enzyme constraints.
    Bekiaris PS; Klamt S
    BMC Bioinformatics; 2020 Jan; 21(1):19. PubMed ID: 31937255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extended bioreaction database that significantly improves reconstruction and analysis of genome-scale metabolic networks.
    Stelzer M; Sun J; Kamphans T; Fekete SP; Zeng AP
    Integr Biol (Camb); 2011 Nov; 3(11):1071-86. PubMed ID: 21952610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomposing flux distributions into elementary flux modes in genome-scale metabolic networks.
    Chan SH; Ji P
    Bioinformatics; 2011 Aug; 27(16):2256-62. PubMed ID: 21685054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NetRed, an algorithm to reduce genome-scale metabolic networks and facilitate the analysis of flux predictions.
    Lugar DJ; Mack SG; Sriram G
    Metab Eng; 2021 May; 65():207-222. PubMed ID: 33161143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and completion of flux balance models from pathway databases.
    Latendresse M; Krummenacker M; Trupp M; Karp PD
    Bioinformatics; 2012 Feb; 28(3):388-96. PubMed ID: 22262672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks.
    Bardoscia M; Marsili M; Samal A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012809. PubMed ID: 26274227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.