BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26771181)

  • 1. Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model.
    Mellem D; Fischer F; Jaspers S; Wenck H; Rübhausen M
    PLoS One; 2016; 11(1):e0146973. PubMed ID: 26771181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitophagy in yeast: Molecular mechanisms and physiological role.
    Kanki T; Furukawa K; Yamashita S
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2756-65. PubMed ID: 25603537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner.
    Frank M; Duvezin-Caubet S; Koob S; Occhipinti A; Jagasia R; Petcherski A; Ruonala MO; Priault M; Salin B; Reichert AS
    Biochim Biophys Acta; 2012 Dec; 1823(12):2297-310. PubMed ID: 22917578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo.
    Bultman SJ; Holley DW; G de Ridder G; Pizzo SV; Sidorova TN; Murray KT; Jensen BC; Wang Z; Bevilacqua A; Chen X; Quintana MT; Tannu M; Rosson GB; Pandya K; Willis MS
    Cardiovasc Pathol; 2016; 25(3):258-269. PubMed ID: 27039070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality control of mitochondria during aging: is there a good and a bad side of mitochondrial dynamics?
    Figge MT; Osiewacz HD; Reichert AS
    Bioessays; 2013 Apr; 35(4):314-22. PubMed ID: 23359437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial dismissal in mammals, from protein degradation to mitophagy.
    Campello S; Strappazzon F; Cecconi F
    Biochim Biophys Acta; 2014 Apr; 1837(4):451-60. PubMed ID: 24275087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial Morphologies Driven by Energy-Consuming Cell Sites in a Spatially and Time-Resolved Quality Model.
    Mellem D; Fischer F; Jaspers S; Wenck H; Rübhausen M
    J Comput Biol; 2019 Jan; 26(1):76-85. PubMed ID: 30204488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox homeostasis, oxidative stress and mitophagy.
    Garza-Lombó C; Pappa A; Panayiotidis MI; Franco R
    Mitochondrion; 2020 Mar; 51():105-117. PubMed ID: 31972372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae.
    Müller M; Lu K; Reichert AS
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2766-74. PubMed ID: 25753536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics.
    Tan DX; Manchester LC; Qin L; Reiter RJ
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27999288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NR4A1 Promotes Diabetic Nephropathy by Activating Mff-Mediated Mitochondrial Fission and Suppressing Parkin-Mediated Mitophagy.
    Sheng J; Li H; Dai Q; Lu C; Xu M; Zhang J; Feng J
    Cell Physiol Biochem; 2018; 48(4):1675-1693. PubMed ID: 30077998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo imaging reveals mitophagy independence in the maintenance of axonal mitochondria during normal aging.
    Cao X; Wang H; Wang Z; Wang Q; Zhang S; Deng Y; Fang Y
    Aging Cell; 2017 Oct; 16(5):1180-1190. PubMed ID: 28782874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage.
    Tseng AH; Shieh SS; Wang DL
    Free Radic Biol Med; 2013 Oct; 63():222-34. PubMed ID: 23665396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context-Dependent Role of Mitochondrial Fusion-Fission in Clonal Expansion of mtDNA Mutations.
    Tam ZY; Gruber J; Halliwell B; Gunawan R
    PLoS Comput Biol; 2015 May; 11(5):e1004183. PubMed ID: 25996936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitophagy, Mitochondrial Dynamics, and Homeostasis in Cardiovascular Aging.
    Wu NN; Zhang Y; Ren J
    Oxid Med Cell Longev; 2019; 2019():9825061. PubMed ID: 31781358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion-fission-mitophagy cycling and metabolic reprogramming coordinate nerve growth factor (NGF)-dependent neuronal differentiation.
    Goglia I; Węglarz-Tomczak E; Gioia C; Liu Y; Virtuoso A; Bonanomi M; Gaglio D; Salmistraro N; De Luca C; Papa M; Alberghina L; Westerhoff HV; Colangelo AM
    FEBS J; 2024 Jul; 291(13):2811-2835. PubMed ID: 38362803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fueling Inflamm-Aging through Mitochondrial Dysfunction: Mechanisms and Molecular Targets.
    Picca A; Lezza AMS; Leeuwenburgh C; Pesce V; Calvani R; Landi F; Bernabei R; Marzetti E
    Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28452964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Function and Mitophagy in the Elderly: Effects of Exercise.
    Moreira OC; Estébanez B; Martínez-Florez S; de Paz JA; Cuevas MJ; González-Gallego J
    Oxid Med Cell Longev; 2017; 2017():2012798. PubMed ID: 28900532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deceleration of fusion-fission cycles improves mitochondrial quality control during aging.
    Figge MT; Reichert AS; Meyer-Hermann M; Osiewacz HD
    PLoS Comput Biol; 2012; 8(6):e1002576. PubMed ID: 22761564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart.
    Ikeda Y; Sciarretta S; Nagarajan N; Rubattu S; Volpe M; Frati G; Sadoshima J
    Oxid Med Cell Longev; 2014; 2014():210934. PubMed ID: 25132912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.