BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26771244)

  • 1. The use of tree bark as long term biomonitor of (137)Cs deposition.
    Cosma C; Iurian AR; Incze R; Kovacs T; Žunić ZS
    J Environ Radioact; 2016 Mar; 153():126-133. PubMed ID: 26771244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrospective determination of 137Cs specific activity distribution in spruce bark and bark aggregated transfer factor in forests on the scale of the Czech Republic ten years after the Chernobyl accident.
    Suchara I; Rulík P; Hůlka J; Pilátová H
    Sci Total Environ; 2011 Apr; 409(10):1927-34. PubMed ID: 21377193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal trends in
    Ohashi S; Kuroda K; Takano T; Suzuki Y; Fujiwara T; Abe H; Kagawa A; Sugiyama M; Kubojima Y; Zhang C; Yamamoto K
    J Environ Radioact; 2017 Nov; 178-179():335-342. PubMed ID: 28965024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term behaviour of 137Cs in spruce bark in coniferous forests in the Czech Republic.
    Rulík P; Pilátová H; Suchara I; Sucharová J
    Environ Pollut; 2014 Jan; 184():511-4. PubMed ID: 24172658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiocesium concentrations in the bark, sapwood and heartwood of three tree species collected at Fukushima forests half a year after the Fukushima Dai-ichi nuclear accident.
    Kuroda K; Kagawa A; Tonosaki M
    J Environ Radioact; 2013 Aug; 122():37-42. PubMed ID: 23531497
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Tsvetnova O; Shcheglov A; Klyashtorin A
    J Environ Radioact; 2018 Dec; 195():79-89. PubMed ID: 30296689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cesium-137 contamination of oak (Quercus petrae Liebl.) from sub-mediterranean zone in South Bulgaria.
    Zhiyanski M; Sokolovska M; Bech J; Clouvas A; Penev I; Badulin V
    J Environ Radioact; 2010 Oct; 101(10):864-8. PubMed ID: 20542358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pilot study of radiocesium activity concentration in the stemflow of deciduous broad-leaved trees: Its relationship with leaves and outer bark as of 2022-2023.
    Sakashita W; Imamura N; Sakata T; Tsuneoka R; Shinomiya Y
    J Environ Radioact; 2024 Mar; 273():107385. PubMed ID: 38244324
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Begy RC; Simon H; Vasilache D; Kelemen S; Cosma C
    Sci Total Environ; 2017 Dec; 599-600():627-636. PubMed ID: 28494287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radionuclide concentrations in air particulate at Palermo (Italy) following Fukushima accident.
    Rizzo S; Tomarchio E
    Radiat Prot Dosimetry; 2013; 153(4):534-40. PubMed ID: 22847867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Distribution of ¹³⁷Cs in Soil of Spruce Forest in the Distant Zone of Chernobyl Fallout.
    Lipatov DN; Shcheglov AI; Manakhov DV; Tsvetnova OB
    Radiats Biol Radioecol; 2017 Jan; 57(1):86-97. PubMed ID: 30698936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of bark washing and epiphytic moss on
    Sato M; Takase T; Yamaguchi K
    J Environ Radioact; 2017 Nov; 178-179():360-366. PubMed ID: 28754574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition.
    Belivermiş M; Kiliç O; Cotuk Y; Topcuoğlu S; Kalayci G; Peştreli D
    Appl Radiat Isot; 2010 Dec; 68(12):2433-7. PubMed ID: 20678943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forest fires in the former Soviet Union: no reasons for radiophobia.
    Jargin SV
    J Environ Radioact; 2011 Feb; 102(2):218-9. PubMed ID: 20980082
    [No Abstract]   [Full Text] [Related]  

  • 15. Distributions of
    Holiaka D; Yoschenko V; Levchuk S; Kashparov V
    J Environ Radioact; 2020 Oct; 222():106319. PubMed ID: 32565416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cs-134/137 contamination and root uptake of different forest trees before and after the Chernobyl accident.
    Ertel J; Ziegler H
    Radiat Environ Biophys; 1991; 30(2):147-57. PubMed ID: 1857763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of initial deposition and behavior of radiocesium in forest ecosystems of different locations and species affected by the Fukushima Daiichi Nuclear Power Plant accident.
    Komatsu M; Kaneko S; Ohashi S; Kuroda K; Sano T; Ikeda S; Saito S; Kiyono Y; Tonosaki M; Miura S; Akama A; Kajimoto T; Takahashi M
    J Environ Radioact; 2016 Sep; 161():2-10. PubMed ID: 26432062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident--a comparison with global fallout and the Chernobyl accident.
    Povinec PP; Sýkora I; Holý K; Gera M; Kováčik A; Brest'áková L
    J Environ Radioact; 2012 Dec; 114():81-8. PubMed ID: 22683235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (137)Cs distributions in soil and trees in forest ecosystems after the radioactive fallout - Comparison study between southern Finland and Fukushima, Japan.
    Pumpanen J; Ohashi M; Endo I; Hari P; Bäck J; Kulmala M; Ohte N
    J Environ Radioact; 2016 Sep; 161():73-81. PubMed ID: 27158060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean.
    Povinec PP; Gera M; Holý K; Hirose K; Lujaniené G; Nakano M; Plastino W; Sýkora I; Bartok J; Gažák M
    Appl Radiat Isot; 2013 Nov; 81():383-92. PubMed ID: 23746709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.