BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26771387)

  • 21. A mechanism underlying hypertensive occurrence in the metabolic syndrome: cooperative effect of oxidative stress and calcium accumulation in vascular smooth muscle cells.
    Zhang X; Yan SM; Zheng HL; Hu DH; Zhang YT; Guan QH; Ding QL
    Horm Metab Res; 2014 Feb; 46(2):126-32. PubMed ID: 24108391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Folate deficiency-induced oxidative stress and apoptosis are mediated via homocysteine-dependent overproduction of hydrogen peroxide and enhanced activation of NF-kappaB in human Hep G2 cells.
    Chern CL; Huang RF; Chen YH; Cheng JT; Liu TZ
    Biomed Pharmacother; 2001 Oct; 55(8):434-42. PubMed ID: 11686576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial reactive oxygen species and calcium uptake regulate activation of phagocytic NADPH oxidase.
    Dikalov SI; Li W; Doughan AK; Blanco RR; Zafari AM
    Am J Physiol Regul Integr Comp Physiol; 2012 May; 302(10):R1134-42. PubMed ID: 22442197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells.
    Forkink M; Basit F; Teixeira J; Swarts HG; Koopman WJH; Willems PHGM
    Redox Biol; 2015 Dec; 6():607-616. PubMed ID: 26516986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation.
    Aguiló JI; Anel A; Catalán E; Sebastián A; Acín-Pérez R; Naval J; Wallich R; Simon MM; Pardo J
    Immunol Cell Biol; 2010 Jul; 88(5):545-54. PubMed ID: 20125115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extracellular matrix loss in chondrocytes after exposure to interleukin-1β in NADPH oxidase-dependent manner.
    Funato S; Yasuhara R; Yoshimura K; Miyamoto Y; Kaneko K; Suzawa T; Chikazu D; Mishima K; Baba K; Kamijo R
    Cell Tissue Res; 2017 Apr; 368(1):135-144. PubMed ID: 28070636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of transient receptor potential melastatin-8 (TRPM8) in menthol-induced calcium entry, reactive oxygen species production and cell death in rheumatoid arthritis rat synovial fibroblasts.
    Zhu S; Wang Y; Pan L; Yang S; Sun Y; Wang X; Hu F
    Eur J Pharmacol; 2014 Feb; 725():1-9. PubMed ID: 24440691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NOX2 deficiency ameliorates cerebral injury through reduction of complexin II-mediated glutamate excitotoxicity in experimental stroke.
    Wang Z; Wei X; Liu K; Zhang X; Yang F; Zhang H; He Y; Zhu T; Li F; Shi W; Zhang Y; Xu H; Liu J; Yi F
    Free Radic Biol Med; 2013 Dec; 65():942-951. PubMed ID: 23982049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells.
    Reinecke F; Levanets O; Olivier Y; Louw R; Semete B; Grobler A; Hidalgo J; Smeitink J; Olckers A; Van der Westhuizen FH
    Biochem J; 2006 Apr; 395(2):405-15. PubMed ID: 16402917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species.
    Jin S; Ray RM; Johnson LR
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G928-37. PubMed ID: 18218673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First evidence for a crosstalk between mitochondrial and NADPH oxidase-derived reactive oxygen species in nitroglycerin-triggered vascular dysfunction.
    Wenzel P; Mollnau H; Oelze M; Schulz E; Wickramanayake JM; Müller J; Schuhmacher S; Hortmann M; Baldus S; Gori T; Brandes RP; Münzel T; Daiber A
    Antioxid Redox Signal; 2008 Aug; 10(8):1435-47. PubMed ID: 18522491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.
    Daiber A
    Biochim Biophys Acta; 2010; 1797(6-7):897-906. PubMed ID: 20122895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid.
    Mangum LC; Borazjani A; Stokes JV; Matthews AT; Lee JH; Chambers JE; Ross MK
    Chem Res Toxicol; 2015 Apr; 28(4):570-84. PubMed ID: 25633958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PLA(2) dependence of diaphragm mitochondrial formation of reactive oxygen species.
    Nethery D; Callahan LA; Stofan D; Mattera R; DiMarco A; Supinski G
    J Appl Physiol (1985); 2000 Jul; 89(1):72-80. PubMed ID: 10904037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum.
    Liu R; Cao P; Ren A; Wang S; Yang T; Zhu T; Shi L; Zhu J; Jiang AL; Zhao MW
    Redox Biol; 2018 Jun; 16():388-400. PubMed ID: 29631100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension.
    Chan SH; Wu KL; Chang AY; Tai MH; Chan JY
    Hypertension; 2009 Feb; 53(2):217-27. PubMed ID: 19114648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Research progress of NADPH oxidases and their inhibitors].
    Yang XL; Chen YJ; Hu GY; Li QB
    Yao Xue Xue Bao; 2016 Apr; 51(4):499-506. PubMed ID: 29859517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.