These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 26771447)
1. Control of Cell Attachment and Spreading on Poly(acrylamide) Brushes with Varied Grafting Density. Lilge I; Schönherr H Langmuir; 2016 Jan; 32(3):838-47. PubMed ID: 26771447 [TBL] [Abstract][Full Text] [Related]
2. Thermo-responsive polymer brushes as intelligent biointerfaces: preparation via ATRP and characterization. Nagase K; Watanabe M; Kikuchi A; Yamato M; Okano T Macromol Biosci; 2011 Mar; 11(3):400-9. PubMed ID: 21104702 [TBL] [Abstract][Full Text] [Related]
3. The Effect of Size and Geometry of Poly(acrylamide) Brush-Based Micropatterns on the Behavior of Cells. Lilge I; Jiang S; Wesner D; Schönherr H ACS Appl Mater Interfaces; 2016 Sep; 8(36):23591-603. PubMed ID: 27541003 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion. Cringus-Fundeanu I; Luijten J; van der Mei HC; Busscher HJ; Schouten AJ Langmuir; 2007 Apr; 23(9):5120-6. PubMed ID: 17388616 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
6. The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion. Singh N; Cui X; Boland T; Husson SM Biomaterials; 2007 Feb; 28(5):763-71. PubMed ID: 17049595 [TBL] [Abstract][Full Text] [Related]
7. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
8. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
9. A novel approach for UV-patterning with binary polymer brushes. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833 [TBL] [Abstract][Full Text] [Related]
10. Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Kishioka T; Usui Y Colloids Surf B Biointerfaces; 2016 Aug; 144():180-187. PubMed ID: 27085477 [TBL] [Abstract][Full Text] [Related]
11. Ultraviolet/Ozone as a Tool To Control Grafting Density in Surface-Initiated Controlled-Radical Polymerizations via Ablation of Bromine. Sheridan RJ; Orski SV; Muramoto S; Stafford CM; Beers KL Langmuir; 2016 Aug; 32(32):8071-6. PubMed ID: 27442615 [TBL] [Abstract][Full Text] [Related]
13. Thermoresponsive poly(glycidyl ether) brushes on gold: Surface engineering parameters and their implication for cell sheet fabrication. Heinen S; Cuéllar-Camacho JL; Weinhart M Acta Biomater; 2017 Sep; 59():117-128. PubMed ID: 28647625 [TBL] [Abstract][Full Text] [Related]
14. Patterned poly(N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization. Tu H; Heitzman CE; Braun PV Langmuir; 2004 Sep; 20(19):8313-20. PubMed ID: 15350108 [TBL] [Abstract][Full Text] [Related]
15. Adhesion and friction properties of polymer brushes: fluoro versus nonfluoro polymer brushes at varying thickness. Bhairamadgi NS; Pujari SP; Leermakers FA; van Rijn CJ; Zuilhof H Langmuir; 2014 Mar; 30(8):2068-76. PubMed ID: 24555721 [TBL] [Abstract][Full Text] [Related]
16. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes. Christau S; Möller T; Yenice Z; Genzer J; von Klitzing R Langmuir; 2014 Nov; 30(43):13033-41. PubMed ID: 25275215 [TBL] [Abstract][Full Text] [Related]
17. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA; Nowakowska J; Khanna N; Landmann R; Klok HA Macromol Biosci; 2016 May; 16(5):676-85. PubMed ID: 26757483 [TBL] [Abstract][Full Text] [Related]
18. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Tugulu S; Klok HA Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637 [TBL] [Abstract][Full Text] [Related]
19. Promoting the cytocompatibility of polyurethane scaffolds via surface photo-grafting polymerization of acrylamide. Zhu Y; Gao C; Guan J; Shen J J Mater Sci Mater Med; 2004 Mar; 15(3):283-9. PubMed ID: 15335001 [TBL] [Abstract][Full Text] [Related]
20. Facile synthesis of thermally stable poly(N-vinylpyrrolidone)-modified gold surfaces by surface-initiated atom transfer radical polymerization. Liu X; Sun K; Wu Z; Lu J; Song B; Tong W; Shi X; Chen H Langmuir; 2012 Jun; 28(25):9451-9. PubMed ID: 22621226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]