These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26771463)

  • 1. A Factor Graph Approach to Automated GO Annotation.
    Spetale FE; Tapia E; Krsticevic F; Roda F; Bulacio P
    PLoS One; 2016; 11(1):e0146986. PubMed ID: 26771463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent prediction of GO protein localization.
    Spetale FE; Arce D; Krsticevic F; Bulacio P; Tapia E
    Sci Rep; 2018 May; 8(1):7757. PubMed ID: 29773825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CvManGO, a method for leveraging computational predictions to improve literature-based Gene Ontology annotations.
    Park J; Costanzo MC; Balakrishnan R; Cherry JM; Hong EL
    Database (Oxford); 2012; 2012():bas001. PubMed ID: 22434836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NoGOA: predicting noisy GO annotations using evidences and sparse representation.
    Yu G; Lu C; Wang J
    BMC Bioinformatics; 2017 Jul; 18(1):350. PubMed ID: 28732468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GO functional similarity clustering depends on similarity measure, clustering method, and annotation completeness.
    Liu M; Thomas PD
    BMC Bioinformatics; 2019 Mar; 20(1):155. PubMed ID: 30917779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies gene function prediction using semantic similarity.
    Yu G; Luo W; Fu G; Wang J
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):121. PubMed ID: 28155711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks.
    Peng J; Uygun S; Kim T; Wang Y; Rhee SY; Chen J
    BMC Bioinformatics; 2015 Feb; 16():44. PubMed ID: 25886899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-label literature classification based on the Gene Ontology graph.
    Jin B; Muller B; Zhai C; Lu X
    BMC Bioinformatics; 2008 Dec; 9():525. PubMed ID: 19063730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes.
    Martin DM; Berriman M; Barton GJ
    BMC Bioinformatics; 2004 Nov; 5():178. PubMed ID: 15550167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving automatic GO annotation with semantic similarity.
    Sarker B; Khare N; Devignes MD; Aridhi S
    BMC Bioinformatics; 2022 Dec; 23(Suppl 2):433. PubMed ID: 36510133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FGGA-lnc: automatic gene ontology annotation of lncRNA sequences based on secondary structures.
    Spetale FE; Murillo J; Villanova GV; Bulacio P; Tapia E
    Interface Focus; 2021 Jun; 11(4):20200064. PubMed ID: 34123354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Gene Ontology resource: enriching a GOld mine.
    Gene Ontology Consortium
    Nucleic Acids Res; 2021 Jan; 49(D1):D325-D334. PubMed ID: 33290552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A categorization approach to automated ontological function annotation.
    Verspoor K; Cohn J; Mniszewski S; Joslyn C
    Protein Sci; 2006 Jun; 15(6):1544-9. PubMed ID: 16672243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational algorithms to predict Gene Ontology annotations.
    Pinoli P; Chicco D; Masseroli M
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S4. PubMed ID: 25916950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMFGO: Gene Function Prediction via Nonnegative Matrix Factorization with Gene Ontology.
    Yu G; Wang K; Fu G; Guo M; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):238-249. PubMed ID: 30059316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NewGOA: Predicting New GO Annotations of Proteins by Bi-Random Walks on a Hybrid Graph.
    Yu G; Fu G; Wang J; Zhao Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1390-1402. PubMed ID: 28641268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Ontology annotations at SGD: new data sources and annotation methods.
    Hong EL; Balakrishnan R; Dong Q; Christie KR; Park J; Binkley G; Costanzo MC; Dwight SS; Engel SR; Fisk DG; Hirschman JE; Hitz BC; Krieger CJ; Livstone MS; Miyasato SR; Nash RS; Oughtred R; Skrzypek MS; Weng S; Wong ED; Zhu KK; Dolinski K; Botstein D; Cherry JM
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D577-81. PubMed ID: 17982175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using computational predictions to improve literature-based Gene Ontology annotations: a feasibility study.
    Costanzo MC; Park J; Balakrishnan R; Cherry JM; Hong EL
    Database (Oxford); 2011; 2011():bar004. PubMed ID: 21411447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of molecular network data reconstructs Gene Ontology.
    Gligorijević V; Janjić V; Pržulj N
    Bioinformatics; 2014 Sep; 30(17):i594-600. PubMed ID: 25161252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.