BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26771618)

  • 1. A Virtual Blind Cane Using a Line Laser-Based Vision System and an Inertial Measurement Unit.
    Dang QK; Chee Y; Pham DD; Suh YS
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26771618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking Distance Estimation Using Walking Canes with Inertial Sensors.
    Dang DC; Suh YS
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable Virtual White Cane Network for navigating people with visual impairment.
    Gao Y; Chandrawanshi R; Nau AC; Tse ZT
    Proc Inst Mech Eng H; 2015 Sep; 229(9):681-8. PubMed ID: 26334037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foot Pose Estimation Using an Inertial Sensor Unit and Two Distance Sensors.
    Duong PD; Suh YS
    Sensors (Basel); 2015 Jul; 15(7):15888-902. PubMed ID: 26151205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the navigation system for the visually impaired by using white cane.
    Hirahara Y; Sakurai Y; Shiidu Y; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4893-6. PubMed ID: 17945865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Augmented White Cane with obstacle height and distance feedback.
    Pyun R; Kim Y; Wespe P; Gassert R; Schneller S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650358. PubMed ID: 24187177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of a white cane which navigates the visually impaired.
    Shiizu Y; Hirahara Y; Yanashima K; Magatani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5005-8. PubMed ID: 18003130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pedestrian Navigation Using Foot-Mounted Inertial Sensor and LIDAR.
    Pham DD; Suh YS
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of voice navigation system for the visually impaired by using IC tags.
    Takatori N; Nojima K; Matsumoto M; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5181-4. PubMed ID: 17945882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new primary mobility tool for the visually impaired: A white cane-adaptive mobility device hybrid.
    Rizzo JR; Conti K; Thomas T; Hudson TE; Wall Emerson R; Kim DS
    Assist Technol; 2018; 30(5):219-225. PubMed ID: 28506151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerial obstacle detection with 3-D mobile devices.
    Sáez JM; Escolano F; Lozano MA
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):74-80. PubMed ID: 24816615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InWalker: smart white cane for the blind.
    Husin MH; Lim YK
    Disabil Rehabil Assist Technol; 2020 Aug; 15(6):701-707. PubMed ID: 31729282
    [No Abstract]   [Full Text] [Related]  

  • 13. A Multi-Sensor Cane Can Detect Changes in Gait Caused by Simulated Gait Abnormalities and Walking Terrains.
    Gill S; Seth N; Scheme E
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereo camera based virtual cane system with identifiable distance tactile feedback for the blind.
    Kim D; Kim K; Lee S
    Sensors (Basel); 2014 Jun; 14(6):10412-31. PubMed ID: 24932864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.
    Lahav O; Gedalevitz H; Battersby S; Brown D; Evett L; Merritt P
    Disabil Rehabil; 2018 May; 40(9):1072-1084. PubMed ID: 28637136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A navigation system for the visually impaired an intelligent white cane.
    Fukasawa AJ; Magatani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4760-3. PubMed ID: 23366992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assistive obstacle detection and navigation devices for vision-impaired users.
    Ong SK; Zhang J; Nee AY
    Disabil Rehabil Assist Technol; 2013 Sep; 8(5):409-16. PubMed ID: 23350879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cane for the blind with a device for detecting and recognizing pedestrian obstacles].
    Chereshanskiĭ VA; Budiianskaia LM; Ivanchenko IA; Karsh LA; Santoniĭ VI
    Med Tekh; 1998; (1):32-4. PubMed ID: 9560816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module.
    Meng X; Zhang ZQ; Wu JK; Wong WC; Yu H
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):892-9. PubMed ID: 24557690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.