These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26771694)

  • 1. Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.
    Liang X; Wang H; Grice JE; Li L; Liu X; Xu ZP; Roberts MS
    Nano Lett; 2016 Feb; 16(2):939-45. PubMed ID: 26771694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress in Delivery of Therapeutic and Imaging Agents Utilizing Organic-Inorganic Hybrid Nanoparticles.
    Haque ST; Chowdhury EH
    Curr Drug Deliv; 2018; 15(4):485-496. PubMed ID: 29165073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo degeneration and the fate of inorganic nanoparticles.
    Feliu N; Docter D; Heine M; Del Pino P; Ashraf S; Kolosnjaj-Tabi J; Macchiarini P; Nielsen P; Alloyeau D; Gazeau F; Stauber RH; Parak WJ
    Chem Soc Rev; 2016 May; 45(9):2440-57. PubMed ID: 26862602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic nanoparticles in drug delivery.
    Mattoussi H; Rotello VM
    Adv Drug Deliv Rev; 2013 May; 65(5):605-6. PubMed ID: 23608640
    [No Abstract]   [Full Text] [Related]  

  • 5. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.
    Bayda S; Hadla M; Palazzolo S; Riello P; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4269-4303. PubMed ID: 29284391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery.
    Montenegro JM; Grazu V; Sukhanova A; Agarwal S; de la Fuente JM; Nabiev I; Greiner A; Parak WJ
    Adv Drug Deliv Rev; 2013 May; 65(5):677-88. PubMed ID: 23280372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short- and Long-Term Tracking of Anionic Ultrasmall Nanoparticles in Kidney.
    Liang X; Wang H; Zhu Y; Zhang R; Cogger VC; Liu X; Xu ZP; Grice JE; Roberts MS
    ACS Nano; 2016 Jan; 10(1):387-95. PubMed ID: 26743581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inorganic nanoparticles for predictive oncology of breast cancer.
    Yezhelyev M; Yacoub R; O'Regan R
    Nanomedicine (Lond); 2009 Jan; 4(1):83-103. PubMed ID: 19093898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.
    Carlander U; Li D; Jolliet O; Emond C; Johanson G
    Int J Nanomedicine; 2016; 11():625-40. PubMed ID: 26929620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic Nanoparticles for Image-Guided Therapy.
    Yoon HY; Jeon S; You DG; Park JH; Kwon IC; Koo H; Kim K
    Bioconjug Chem; 2017 Jan; 28(1):124-134. PubMed ID: 27788580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile.
    Rafiei P; Haddadi A
    Int J Nanomedicine; 2017; 12():935-947. PubMed ID: 28184163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice.
    Lin Z; Monteiro-Riviere NA; Riviere JE
    Nanotoxicology; 2016; 10(2):162-72. PubMed ID: 25961857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of inorganic nanoparticles for bioimaging applications.
    Erathodiyil N; Ying JY
    Acc Chem Res; 2011 Oct; 44(10):925-35. PubMed ID: 21648430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the impact of biocorona formation kinetics on interspecies extrapolations of nanoparticle biodistribution modeling.
    Sahneh FD; Scoglio CM; Monteiro-Riviere NA; Riviere JE
    Nanomedicine (Lond); 2015 Jan; 10(1):25-33. PubMed ID: 25032980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications.
    Shen M; Shi X
    Nanoscale; 2010 Sep; 2(9):1596-610. PubMed ID: 20820690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small Surface, Big Effects, and Big Challenges: Toward Understanding Enzymatic Activity at the Inorganic Nanoparticle-Substrate Interface.
    Algar WR; Jeen T; Massey M; Peveler WJ; Asselin J
    Langmuir; 2019 Jun; 35(22):7067-7091. PubMed ID: 30415548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fate of MAb-targeted Cd(125m)Te/ZnS nanoparticles in vivo.
    Kennel SJ; Woodward JD; Rondinone AJ; Wall J; Huang Y; Mirzadeh S
    Nucl Med Biol; 2008 May; 35(4):501-14. PubMed ID: 18482688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagy Modulated by Inorganic Nanomaterials.
    Guo L; He N; Zhao Y; Liu T; Deng Y
    Theranostics; 2020; 10(7):3206-3222. PubMed ID: 32194863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Coating Strategy to Functionalize Inorganic Nanoparticles for Biosensing.
    Park YI; Kim E; Huang CH; Park KS; Castro CM; Lee H; Weissleder R
    Bioconjug Chem; 2017 Jan; 28(1):33-37. PubMed ID: 27792877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.