These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26772537)

  • 1. An acetyl-L-carnitine switch on mitochondrial dysfunction and rescue in the metabolomics study on aluminum oxide nanoparticles.
    Li X; Zhang C; Zhang X; Wang S; Meng Q; Wu S; Yang H; Xia Y; Chen R
    Part Fibre Toxicol; 2016 Jan; 13():4. PubMed ID: 26772537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomics reveals the role of acetyl-l-carnitine metabolism in γ-Fe
    Huang Z; Xu B; Huang X; Zhang Y; Yu M; Han X; Song L; Xia Y; Zhou Z; Wang X; Chen M; Lu C
    Nanotoxicology; 2019 Mar; 13(2):204-220. PubMed ID: 30663479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up-regulation of miR-297 mediates aluminum oxide nanoparticle-induced lung inflammation through activation of Notch pathway.
    Yun J; Yang H; Li X; Sun H; Xu J; Meng Q; Wu S; Zhang X; Yang X; Li B; Chen R
    Environ Pollut; 2020 Apr; 259():113839. PubMed ID: 31918133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxicity and cytotoxicity of ZnO and Al2O3 nanoparticles.
    Sliwinska A; Kwiatkowski D; Czarny P; Milczarek J; Toma M; Korycinska A; Szemraj J; Sliwinski T
    Toxicol Mech Methods; 2015 Mar; 25(3):176-83. PubMed ID: 25578534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of PTPN6 exacerbates aluminum oxide nanoparticle-induced COPD-like lesions in mice through activation of STAT pathway.
    Li X; Yang H; Wu S; Meng Q; Sun H; Lu R; Cui J; Zheng Y; Chen W; Zhang R; Aschner M; Chen R
    Part Fibre Toxicol; 2017 Dec; 14(1):53. PubMed ID: 29233151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles.
    Li X; Zhang C; Bian Q; Gao N; Zhang X; Meng Q; Wu S; Wang S; Xia Y; Chen R
    Nanotoxicology; 2016 Sep; 10(7):957-69. PubMed ID: 26830206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro.
    Rajiv S; Jerobin J; Saranya V; Nainawat M; Sharma A; Makwana P; Gayathri C; Bharath L; Singh M; Kumar M; Mukherjee A; Chandrasekaran N
    Hum Exp Toxicol; 2016 Feb; 35(2):170-83. PubMed ID: 25829403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria-Modulating Porous Se@SiO
    Wang M; Wang K; Deng G; Liu X; Wu X; Hu H; Zhang Y; Gao W; Li Q
    Int J Nanomedicine; 2020; 15():2287-2302. PubMed ID: 32280221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of cytotoxicity of α-Al
    Nogueira DJ; Arl M; Köerich JS; Simioni C; Ouriques LC; Vicentini DS; Matias WG
    Toxicol In Vitro; 2019 Dec; 61():104596. PubMed ID: 31295524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive impairment of learning and memory in adult zebrafish treated by Al
    Chen J; Fan R; Wang Y; Huang T; Shang N; He K; Zhang P; Zhang L; Niu Q; Zhang Q
    Chemosphere; 2020 Sep; 254():126608. PubMed ID: 32957262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alumina nanoparticles-induced heterophil extracellular traps exacerbate liver injury by regulating oxidative stress and inflammation in chickens.
    Jiang L; Gao X; Xu J; Liu W; Li S; Huang W; Zhao H; Yang Z; Wei Z
    J Inorg Biochem; 2022 Apr; 229():111725. PubMed ID: 35063926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome alterations and genotoxic influences in zebrafish larvae after exposure to dissolved aluminum and aluminum oxide nanoparticles.
    Boran H; Şaffak S
    Toxicol Mech Methods; 2020 Sep; 30(7):546-554. PubMed ID: 32580614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells.
    Ruenraroengsak P; Tetley TD
    Part Fibre Toxicol; 2015 Jul; 12():19. PubMed ID: 26133975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum oxide and zinc oxide induced nanotoxicity in rat brain, heart, and lung.
    Yousef MI; Roychoudhury S; Jafaar KS; Slama P; Kesari KK; Kamel MA
    Physiol Res; 2022 Nov; 71(5):677-694. PubMed ID: 36121020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and biochemical evidence on the protection of cardiomyocytes from phosphine-induced oxidative stress, mitochondrial dysfunction and apoptosis by acetyl-L-carnitine.
    Baghaei A; Solgi R; Jafari A; Abdolghaffari AH; Golaghaei A; Asghari MH; Baeeri M; Ostad SN; Sharifzadeh M; Abdollahi M
    Environ Toxicol Pharmacol; 2016 Mar; 42():30-7. PubMed ID: 26773361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging.
    Manczak M; Jung Y; Park BS; Partovi D; Reddy PH
    J Neurochem; 2005 Feb; 92(3):494-504. PubMed ID: 15659220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystalline phase-dependent toxicity of aluminum oxide nanoparticles toward Daphnia magna and ecological risk assessment.
    Nogueira DJ; Vaz VP; Neto OS; Silva MLND; Simioni C; Ouriques LC; Vicentini DS; Matias WG
    Environ Res; 2020 Mar; 182():108987. PubMed ID: 31812936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotoxicity of aluminum oxide nanoparticles and their mechanistic role in dopaminergic neuron injury involving p53-related pathways.
    Liu H; Zhang W; Fang Y; Yang H; Tian L; Li K; Lai W; Bian L; Lin B; Liu X; Xi Z
    J Hazard Mater; 2020 Jun; 392():122312. PubMed ID: 32105957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomic analysis of post-flooding recovery in soybean root exposed to aluminum oxide nanoparticles.
    Yasmeen F; Raja NI; Mustafa G; Sakata K; Komatsu S
    J Proteomics; 2016 Jun; 143():136-150. PubMed ID: 27079982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resveratrol alleviates lung ischemia and reperfusion-induced pulmonary capillary injury through modulating pulmonary mitochondrial metabolism.
    Yeh DY; Fu YH; Yang YC; Wang JJ
    Transplant Proc; 2014 May; 46(4):1131-4. PubMed ID: 24815145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.