BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 26773044)

  • 21. SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia.
    Brown LM; Hediyeh-Zadeh S; Sadras T; Huckstep H; Sandow JJ; Bartolo RC; Kosasih HJ; Davidson NM; Schmidt B; Bjelosevic S; Johnstone R; Webb AI; Khaw SL; Oshlack A; Davis MJ; Ekert PG
    Blood Adv; 2022 Apr; 6(7):2373-2387. PubMed ID: 35061886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The SH2-containing adapter protein GRB10 interacts with BCR-ABL.
    Bai RY; Jahn T; Schrem S; Munzert G; Weidner KM; Wang JY; Duyster J
    Oncogene; 1998 Aug; 17(8):941-8. PubMed ID: 9747873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).
    Breitkopf SB; Yuan M; Pihan GA; Asara JM
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16190-5. PubMed ID: 22988110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaffolding protein Gab2 mediates differentiation signaling downstream of Fms receptor tyrosine kinase.
    Liu Y; Jenkins B; Shin JL; Rohrschneider LR
    Mol Cell Biol; 2001 May; 21(9):3047-56. PubMed ID: 11287610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RUNX1 transactivates BCR-ABL1 expression in Philadelphia chromosome positive acute lymphoblastic leukemia.
    Masuda T; Maeda S; Shimada S; Sakuramoto N; Morita K; Koyama A; Suzuki K; Mitsuda Y; Matsuo H; Kubota H; Kato I; Tanaka K; Takita J; Hirata M; Kataoka TR; Nakahata T; Adachi S; Hirai H; Mizuta S; Naka K; Imai Y; Kimura S; Sugiyama H; Kamikubo Y
    Cancer Sci; 2022 Feb; 113(2):529-539. PubMed ID: 34902205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergism between IL7R and CXCR4 drives BCR-ABL induced transformation in Philadelphia chromosome-positive acute lymphoblastic leukemia.
    Abdelrasoul H; Vadakumchery A; Werner M; Lenk L; Khadour A; Young M; El Ayoubi O; Vogiatzi F; Krämer M; Schmid V; Chen Z; Yousafzai Y; Cario G; Schrappe M; Müschen M; Halsey C; Mulaw MA; Schewe DM; Hobeika E; Alsadeq A; Jumaa H
    Nat Commun; 2020 Jun; 11(1):3194. PubMed ID: 32581241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway or NUP214-ABL1 fusion protein in human Acute Lymphoblastic Leukemia.
    Simioni C; Ultimo S; Martelli AM; Zauli G; Milani D; McCubrey JA; Capitani S; Neri LM
    Oncotarget; 2016 Nov; 7(48):79842-79853. PubMed ID: 27821800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity.
    Li S; Ilaria RL; Million RP; Daley GQ; Van Etten RA
    J Exp Med; 1999 May; 189(9):1399-412. PubMed ID: 10224280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaffolding adapter Grb2-associated binder 2 requires Syk to transmit signals from FcepsilonRI.
    Yu M; Lowell CA; Neel BG; Gu H
    J Immunol; 2006 Feb; 176(4):2421-9. PubMed ID: 16456001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mast cell deficiency prevents BCR::ABL1 induced splenomegaly and cytokine elevation in a CML mouse model.
    Langhammer M; Schöpf J; Jaquet T; Horn K; Angel M; Spohr C; Christen D; Uhl FM; Maié T; Jacobi H; Feyerabend TB; Huber J; Panning M; Sitaru C; Costa I; Zeiser R; Aumann K; Becker H; Braunschweig T; Koschmieder S; Shoumariyeh K; Huber M; Schemionek-Reinders M; Brummer T; Halbach S
    Leukemia; 2023 Jul; 37(7):1474-1484. PubMed ID: 37161070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A BCR-ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice.
    Johnson KJ; Griswold IJ; O'Hare T; Corbin AS; Loriaux M; Deininger MW; Druker BJ
    PLoS One; 2009 Oct; 4(10):e7439. PubMed ID: 19823681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular pathogenesis of chronic myeloid leukemia: implications for new therapeutic strategies.
    Warmuth M; Danhauser-Riedl S; Hallek M
    Ann Hematol; 1999 Feb; 78(2):49-64. PubMed ID: 10089019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasma tyrosine kinase activity as a potential biomarker in BCR-ABL1-targeted therapy.
    Yeh CH; Abdool A; Bruey JM
    Cancer Biomark; 2010; 7(6):295-303. PubMed ID: 21694468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors.
    Pietarinen PO; Eide CA; Ayuda-Durán P; Potdar S; Kuusanmäki H; Andersson EI; Mpindi JP; Pemovska T; Kontro M; Heckman CA; Kallioniemi O; Wennerberg K; Hjorth-Hansen H; Druker BJ; Enserink JM; Tyner JW; Mustjoki S; Porkka K
    Oncotarget; 2017 Apr; 8(14):22606-22615. PubMed ID: 28186983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New Developments in Chronic Myeloid Leukemia: Implications for Therapy.
    Tabarestani S; Movafagh A
    Iran J Cancer Prev; 2016 Feb; 9(1):e3961. PubMed ID: 27366312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphatidylinositol 3-kinase p85{alpha} subunit-dependent interaction with BCR/ABL-related fusion tyrosine kinases: molecular mechanisms and biological consequences.
    Ren SY; Bolton E; Mohi MG; Morrione A; Neel BG; Skorski T
    Mol Cell Biol; 2005 Sep; 25(18):8001-8. PubMed ID: 16135792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leukemia cell lines: in vitro models for the study of Philadelphia chromosome-positive leukemia.
    Drexler HG; MacLeod RA; Uphoff CC
    Leuk Res; 1999 Mar; 23(3):207-15. PubMed ID: 10071072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tyrosine phosphorylation of p120cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidylinositol 3-kinase.
    Jain SK; Langdon WY; Varticovski L
    Oncogene; 1997 May; 14(18):2217-28. PubMed ID: 9174058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential expression and signaling of CBL and CBL-B in BCR/ABL transformed cells.
    Sattler M; Pride YB; Quinnan LR; Verma S; Malouf NA; Husson H; Salgia R; Lipkowitz S; Griffin JD
    Oncogene; 2002 Feb; 21(9):1423-33. PubMed ID: 11857085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains.
    Sha F; Gencer EB; Georgeon S; Koide A; Yasui N; Koide S; Hantschel O
    Proc Natl Acad Sci U S A; 2013 Sep; 110(37):14924-9. PubMed ID: 23980151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.