These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 26773051)
1. DNA-DNA kissing complexes as a new tool for the assembly of DNA nanostructures. Barth A; Kobbe D; Focke M Nucleic Acids Res; 2016 Feb; 44(4):1502-13. PubMed ID: 26773051 [TBL] [Abstract][Full Text] [Related]
3. Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure. Takeuchi Y; Endo M; Suzuki Y; Hidaka K; Durand G; Dausse E; Toulmé JJ; Sugiyama H Biomater Sci; 2016 Jan; 4(1):130-5. PubMed ID: 26438892 [TBL] [Abstract][Full Text] [Related]
4. Effect of helix stability on the formation of loop-loop complexes. Sehdev P; Crews G; Soto AM Biochemistry; 2012 Dec; 51(48):9612-23. PubMed ID: 23094588 [TBL] [Abstract][Full Text] [Related]
5. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Liu D; Geary CW; Chen G; Shao Y; Li M; Mao C; Andersen ES; Piccirilli JA; Rothemund PWK; Weizmann Y Nat Chem; 2020 Mar; 12(3):249-259. PubMed ID: 31959958 [TBL] [Abstract][Full Text] [Related]
6. On the conformational stability of the smallest RNA kissing complexes maintained through two G·C base pairs. Chu W; Weerasekera A; Kim CH Biochem Biophys Res Commun; 2017 Jan; 483(1):39-44. PubMed ID: 28063925 [TBL] [Abstract][Full Text] [Related]
7. Building DNA nanostructures for molecular computation, templated assembly, and biological applications. Rangnekar A; LaBean TH Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350 [TBL] [Abstract][Full Text] [Related]
8. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics. Wei X; Nangreave J; Liu Y Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996 [TBL] [Abstract][Full Text] [Related]
9. Wireframe and tensegrity DNA nanostructures. Simmel SS; Nickels PC; Liedl T Acc Chem Res; 2014 Jun; 47(6):1691-9. PubMed ID: 24720250 [TBL] [Abstract][Full Text] [Related]
10. Ligand inducible assembly of a DNA tetrahedron. Dohno C; Atsumi H; Nakatani K Chem Commun (Camb); 2011 Mar; 47(12):3499-501. PubMed ID: 21298166 [TBL] [Abstract][Full Text] [Related]
12. HIV-1 genome dimerization: formation kinetics and thermal stability of dimeric HIV-1Lai RNAs are not improved by the 1-232 and 296-790 regions flanking the kissing-loop domain. Laughrea M; Jetté L Biochemistry; 1996 Jul; 35(29):9366-74. PubMed ID: 8755714 [TBL] [Abstract][Full Text] [Related]
13. Mapping the thermal behavior of DNA origami nanostructures. Wei X; Nangreave J; Jiang S; Yan H; Liu Y J Am Chem Soc; 2013 Apr; 135(16):6165-76. PubMed ID: 23537246 [TBL] [Abstract][Full Text] [Related]
14. Assembly of Two-Dimensional DNA Arrays Could Influence the Formation of Their Component Tiles. Paluzzi VE; Zhang C; Mao C Chembiochem; 2022 Sep; 23(18):e202200306. PubMed ID: 35802389 [TBL] [Abstract][Full Text] [Related]
15. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. Guo P J Nanosci Nanotechnol; 2005 Dec; 5(12):1964-82. PubMed ID: 16430131 [TBL] [Abstract][Full Text] [Related]
16. Recent progress in DNA origami technology. Endo M; Sugiyama H Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269 [TBL] [Abstract][Full Text] [Related]
17. GENESUS: a two-step sequence design program for DNA nanostructure self-assembly. Tsutsumi T; Asakawa T; Kanegami A; Okada T; Tahira T; Hayashi K Biotechniques; 2014; 56(4):180-5. PubMed ID: 24724843 [TBL] [Abstract][Full Text] [Related]