These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26773299)

  • 1. Superresolution microscopy with transient binding.
    Molle J; Raab M; Holzmeister S; Schmitt-Monreal D; Grohmann D; He Z; Tinnefeld P
    Curr Opin Biotechnol; 2016 Jun; 39():8-16. PubMed ID: 26773299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence microscopy with 6 nm resolution on DNA origami.
    Raab M; Schmied JJ; Jusuk I; Forthmann C; Tinnefeld P
    Chemphyschem; 2014 Aug; 15(12):2431-5. PubMed ID: 24895173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superresolution Imaging with Single-Antibody Labeling.
    Gunasekara H; Perera T; Anderson J; Saed B; Ramseier N; Keshta N; Hu YS
    Bioconjug Chem; 2023 May; 34(5):825-833. PubMed ID: 37145839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolving single-molecule assembled patterns with superresolution blink-microscopy.
    Cordes T; Strackharn M; Stahl SW; Summerer W; Steinhauer C; Forthmann C; Puchner EM; Vogelsang J; Gaub HE; Tinnefeld P
    Nano Lett; 2010 Feb; 10(2):645-51. PubMed ID: 20017533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes.
    Miller H; Zhou Z; Wollman AJ; Leake MC
    Methods; 2015 Oct; 88():81-8. PubMed ID: 25637032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures.
    Schröder T; Scheible MB; Steiner F; Vogelsang J; Tinnefeld P
    Nano Lett; 2019 Feb; 19(2):1275-1281. PubMed ID: 30681342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures.
    Raab M; Jusuk I; Molle J; Buhr E; Bodermann B; Bergmann D; Bosse H; Tinnefeld P
    Sci Rep; 2018 Jan; 8(1):1780. PubMed ID: 29379061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding-activated localization microscopy of DNA structures.
    Schoen I; Ries J; Klotzsch E; Ewers H; Vogel V
    Nano Lett; 2011 Sep; 11(9):4008-11. PubMed ID: 21838238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D superresolution microscopy by supercritical angle detection.
    Deschamps J; Mund M; Ries J
    Opt Express; 2014 Nov; 22(23):29081-91. PubMed ID: 25402146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions.
    Nahmani M; Lanahan C; DeRosier D; Turrigiano GG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3832-3836. PubMed ID: 28348224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced dyes enhance single-molecule localization density for live superresolution imaging.
    Carlini L; Benke A; Reymond L; Lukinavičius G; Manley S
    Chemphyschem; 2014 Mar; 15(4):750-5. PubMed ID: 24554553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation analysis framework for localization-based superresolution microscopy.
    Schnitzbauer J; Wang Y; Zhao S; Bakalar M; Nuwal T; Chen B; Huang B
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3219-3224. PubMed ID: 29531072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy.
    Hajj B; Wisniewski J; El Beheiry M; Chen J; Revyakin A; Wu C; Dahan M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17480-5. PubMed ID: 25422417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending microscopic resolution with single-molecule imaging and active control.
    Thompson MA; Lew MD; Moerner WE
    Annu Rev Biophys; 2012; 41():321-42. PubMed ID: 22577822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoswitchable fluorescent proteins for superresolution fluorescence microscopy circumventing the diffraction limit of light.
    Rocha S; De Keersmaecker H; Uji-i H; Hofkens J; Mizuno H
    Methods Mol Biol; 2014; 1076():793-812. PubMed ID: 24108655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superresolution imaging using single-molecule localization.
    Patterson G; Davidson M; Manley S; Lippincott-Schwartz J
    Annu Rev Phys Chem; 2010; 61():345-67. PubMed ID: 20055680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations.
    Szczurek A; Klewes L; Xing J; Gourram A; Birk U; Knecht H; Dobrucki JW; Mai S; Cremer C
    Nucleic Acids Res; 2017 May; 45(8):e56. PubMed ID: 28082388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast.
    Kaplan C; Ewers H
    Nat Protoc; 2015 Jul; 10(7):1007-21. PubMed ID: 26068895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders.
    Platonova E; Winterflood CM; Junemann A; Albrecht D; Faix J; Ewers H
    Methods; 2015 Oct; 88():89-97. PubMed ID: 26123185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization microscopy of DNA in situ using Vybrant(®) DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution.
    Żurek-Biesiada D; Szczurek AT; Prakash K; Mohana GK; Lee HK; Roignant JY; Birk UJ; Dobrucki JW; Cremer C
    Exp Cell Res; 2016 May; 343(2):97-106. PubMed ID: 26341267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.