BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26773540)

  • 1. Heterologous complementation studies reveal the solute transport profiles of a two-member nucleobase cation symporter 1 (NCS1) family in Physcomitrella patens.
    Minton JA; Rapp M; Stoffer AJ; Schultes NP; Mourad GS
    Plant Physiol Biochem; 2016 Mar; 100():12-17. PubMed ID: 26773540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.
    Rapp M; Schein J; Hunt KA; Nalam V; Mourad GS; Schultes NP
    Protoplasma; 2016 Mar; 253(2):611-23. PubMed ID: 26022088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile.
    Schein JR; Hunt KA; Minton JA; Schultes NP; Mourad GS
    Plant Physiol Biochem; 2013 Sep; 70():52-60. PubMed ID: 23770594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The solute transport profile of two Aza-guanine transporters from the Honey bee pathogen Paenibacillus larvae.
    Alexander CR; Dingman DW; Schultes NP; Mourad GS
    FEMS Microbiol Lett; 2018 Apr; 365(7):. PubMed ID: 29385571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solute transport and binding profile of a novel nucleobase cation symporter 2 from the honeybee pathogen
    Stoffer-Bittner AJ; Alexander CR; Dingman DW; Mourad GS; Schultes NP
    FEBS Open Bio; 2018 Aug; 8(8):1322-1331. PubMed ID: 30087835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in nucleobase cation symporter-1 (NCS1) family transport proteins from bacteria, archaea, fungi and plants.
    Patching SG
    J Biosci; 2018 Sep; 43(4):797-815. PubMed ID: 30207323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptic purine transporters in Aspergillus nidulans reveal the role of specific residues in the evolution of specificity in the NCS1 family.
    Sioupouli G; Lambrinidis G; Mikros E; Amillis S; Diallinas G
    Mol Microbiol; 2017 Jan; 103(2):319-332. PubMed ID: 27741561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis.
    Mansfield TA; Schultes NP; Mourad GS
    FEBS Lett; 2009 Jan; 583(2):481-6. PubMed ID: 19121308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis.
    Mourad GS; Tippmann-Crosby J; Hunt KA; Gicheru Y; Bade K; Mansfield TA; Schultes NP
    FEBS Lett; 2012 May; 586(9):1370-8. PubMed ID: 22616996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockouts of Physcomitrella patens CHX1 and CHX2 transporters reveal high complexity of potassium homeostasis.
    Mottaleb SA; Rodríguez-Navarro A; Haro R
    Plant Cell Physiol; 2013 Sep; 54(9):1455-68. PubMed ID: 23825218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and functional characterization of the first nucleobase transporter gene from African trypanosomes.
    Henriques C; Sanchez MA; Tryon R; Landfear SM
    Mol Biochem Parasitol; 2003 Aug; 130(2):101-10. PubMed ID: 12946846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.
    Witz S; Panwar P; Schober M; Deppe J; Pasha FA; Lemieux MJ; Möhlmann T
    PLoS One; 2014; 9(3):e91343. PubMed ID: 24621654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potassium transporters HAK2 and HAK3 localize to endomembranes in Physcomitrella patens. HAK2 is required in some stress conditions.
    Haro R; Fraile-Escanciano A; González-Melendi P; Rodríguez-Navarro A
    Plant Cell Physiol; 2013 Sep; 54(9):1441-54. PubMed ID: 23825217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants.
    Iwai M; Yokono M
    Curr Opin Plant Biol; 2017 Jun; 37():94-101. PubMed ID: 28445834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene targeting in Physcomitrella patens.
    Schaefer DG
    Curr Opin Plant Biol; 2001 Apr; 4(2):143-50. PubMed ID: 11228437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of New Specificity Determinants in Bacterial Purine Nucleobase Transporters based on an Ancestral Sequence Reconstruction Approach.
    Tatsaki E; Anagnostopoulou E; Zantza I; Lazou P; Mikros E; Frillingos S
    J Mol Biol; 2021 Dec; 433(24):167329. PubMed ID: 34710398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PLUTO plastidial nucleobase transporter also transports the thiamin precursor hydroxymethylpyrimidine.
    Beaudoin GAW; Johnson TS; Hanson AD
    Biosci Rep; 2018 Apr; 38(2):. PubMed ID: 29507060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of novel Na+-dependent nucleobase transport systems at the blood-testis barrier.
    Kato R; Maeda T; Akaike T; Tamai I
    Am J Physiol Endocrinol Metab; 2006 May; 290(5):E968-75. PubMed ID: 16368787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physcomitrella patens as a model for the study of chloroplast protein transport: conserved machineries between vascular and non-vascular plants.
    Hofmann NR; Theg SM
    Plant Mol Biol; 2003 Nov; 53(5):621-32. PubMed ID: 15010601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.