These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26773541)

  • 1. Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species.
    Jin JQ; Yao MZ; Ma CL; Ma JQ; Chen L
    Plant Physiol Biochem; 2016 Mar; 100():18-26. PubMed ID: 26773541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deeply functional identification of
    Wang Y; Liu YF; Wei MY; Zhang CY; Chen JD; Yao MZ; Chen L; Jin JQ
    Hortic Res; 2023 Feb; 10(2):uhac279. PubMed ID: 36793757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caffeine synthase and related methyltransferases in plants.
    Misako K; Kouichi M
    Front Biosci; 2004 May; 9():1833-42. PubMed ID: 14977590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low caffeine content in novel grafted tea with Camellia sinensis as scions and Camellia oleifera as stocks.
    Deng WW; Li M; Gu CC; Li DX; Ma LL; Jin Y; Wan XC
    Nat Prod Commun; 2015 May; 10(5):789-92. PubMed ID: 26058159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association mapping of caffeine content with TCS1 in tea plant and its related species.
    Jin JQ; Yao MZ; Ma CL; Ma JQ; Chen L
    Plant Physiol Biochem; 2016 Aug; 105():251-259. PubMed ID: 27116373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis.
    Kato M; Kitao N; Ishida M; Morimoto H; Irino F; Mizuno K
    Z Naturforsch C J Biosci; 2010; 65(3-4):245-56. PubMed ID: 20469645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.
    Jin L; Bhuiya MW; Li M; Liu X; Han J; Deng W; Wang M; Yu O; Zhang Z
    PLoS One; 2014; 9(8):e105368. PubMed ID: 25133732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic and Transcriptomic Analyses Reveal the Characteristics of Tea Flavonoids and Caffeine Accumulation and Regulation between Chinese Varieties (
    Tang H; Zhang M; Liu J; Cai J
    Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme.
    Yoneyama N; Morimoto H; Ye CX; Ashihara H; Mizuno K; Kato M
    Mol Genet Genomics; 2006 Feb; 275(2):125-35. PubMed ID: 16333668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcription factor CsS40 negatively regulates
    Yao X; Chen H; Ai A; Wang F; Lian S; Tang H; Jiang Y; Jiao Y; He Y; Li T; Lu L
    Hortic Res; 2023 Sep; 10(9):uhad162. PubMed ID: 37731861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of caffeine biosynthesis genes in tea (Camellia sinensis).
    Li Y; Ogita S; Keya CA; Ashihara H
    Z Naturforsch C J Biosci; 2008; 63(3-4):267-70. PubMed ID: 18533472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA.
    Mohanpuria P; Kumar V; Ahuja PS; Yadav SK
    Plant Mol Biol; 2011 Aug; 76(6):523-34. PubMed ID: 21562910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.
    Schimpl FC; Kiyota E; Mayer JL; Gonçalves JF; da Silva JF; Mazzafera P
    Phytochemistry; 2014 Sep; 105():25-36. PubMed ID: 24856135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of caffeine underlying the diversity of motif B' methyltransferase.
    Nakayama F; Mizuno K; Kato M
    Nat Prod Commun; 2015 May; 10(5):799-801. PubMed ID: 26058161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new DNA marker CafLess-TCS1 for selection of caffeine-less tea plants.
    Ogino A; Taniguchi F; Yoshida K; Matsumoto S; Fukuoka H; Nesumi A
    Breed Sci; 2019 Sep; 69(3):393-400. PubMed ID: 31598071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis).
    Li CF; Zhu Y; Yu Y; Zhao QY; Wang SJ; Wang XC; Yao MZ; Luo D; Li X; Chen L; Yang YJ
    BMC Genomics; 2015 Jul; 16(1):560. PubMed ID: 26220550
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhou MZ; Yan CY; Zeng Z; Luo L; Zeng W; Huang YH
    J Agric Food Chem; 2020 Dec; 68(52):15359-15372. PubMed ID: 33206517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations.
    Zhu B; Chen LB; Lu M; Zhang J; Han J; Deng WW; Zhang ZZ
    J Agric Food Chem; 2019 Mar; 67(12):3400-3411. PubMed ID: 30830771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of caffeine synthase from tea leaves.
    Kato M; Mizuno K; Fujimura T; Iwama M; Irie M; Crozier A; Ashihara H
    Plant Physiol; 1999 Jun; 120(2):579-86. PubMed ID: 10364410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L.
    Mohanpuria P; Kumar V; Ahuja PS; Yadav SK
    Mol Biotechnol; 2011 Jul; 48(3):235-43. PubMed ID: 21181507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.