These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26773757)

  • 1. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.
    Nijenhuis I; Kuntze K
    Curr Opin Biotechnol; 2016 Apr; 38():33-8. PubMed ID: 26773757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants?
    Wang S; Chen S; Wang Y; Low A; Lu Q; Qiu R
    Biotechnol Adv; 2016 Dec; 34(8):1384-1395. PubMed ID: 27765723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial dehalogenation of organohalides in marine and estuarine environments.
    Zanaroli G; Negroni A; Häggblom MM; Fava F
    Curr Opin Biotechnol; 2015 Jun; 33():287-95. PubMed ID: 25863015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive Dehalogenases Come of Age in Biological Destruction of Organohalides.
    Jugder BE; Ertan H; Lee M; Manefield M; Marquis CP
    Trends Biotechnol; 2015 Oct; 33(10):595-610. PubMed ID: 26409778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous Expression of Active
    Picott KJ; Flick R; Edwards EA
    Appl Environ Microbiol; 2022 Feb; 88(3):e0199321. PubMed ID: 34851719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation.
    Jugder BE; Ertan H; Bohl S; Lee M; Marquis CP; Manefield M
    Front Microbiol; 2016; 7():249. PubMed ID: 26973626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burning question: Rethinking organohalide degradation strategy for bioremediation applications.
    Lu Q; Liang Q; Wang S
    Microb Biotechnol; 2024 Aug; 17(8):e14539. PubMed ID: 39075849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transport chains in organohalide-respiring bacteria and bioremediation implications.
    Wang S; Qiu L; Liu X; Xu G; Siegert M; Lu Q; Juneau P; Yu L; Liang D; He Z; Qiu R
    Biotechnol Adv; 2018; 36(4):1194-1206. PubMed ID: 29631017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic microbial dehalogenation and its key players in the contaminated Bitterfeld-Wolfen megasite.
    Nijenhuis I; Stollberg R; Lechner U
    FEMS Microbiol Ecol; 2018 Apr; 94(4):. PubMed ID: 29385441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Cleavage of C-F Bonds in Two C
    Yu Y; Zhang K; Li Z; Ren C; Chen J; Lin YH; Liu J; Men Y
    Environ Sci Technol; 2020 Nov; 54(22):14393-14402. PubMed ID: 33121241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments.
    Ding C; He J
    Microb Biotechnol; 2012 May; 5(3):347-67. PubMed ID: 22070763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of carbon isotope fractionation during anaerobic reductive dehalogenation of chlorinated and brominated benzenes.
    Sohn SY; Kuntze K; Nijenhuis I; Häggblom MM
    Chemosphere; 2018 Feb; 193():785-792. PubMed ID: 29175406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling.
    Cooper M; Wagner A; Wondrousch D; Sonntag F; Sonnabend A; Brehm M; Schüürmann G; Adrian L
    Environ Sci Technol; 2015 May; 49(10):6018-28. PubMed ID: 25909816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemistry of Catabolic Reductive Dehalogenation.
    Fincker M; Spormann AM
    Annu Rev Biochem; 2017 Jun; 86():357-386. PubMed ID: 28654328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Mechanisms of Biotic Chlorinated Alkane Reduction: Evidence of Nucleophilic Substitution (S
    Heckel B; Elsner M
    Environ Sci Technol; 2022 May; 56(10):6325-6336. PubMed ID: 35467338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol.
    Li Z; Suzuki D; Zhang C; Yoshida N; Yang S; Katayama A
    J Biosci Bioeng; 2013 Nov; 116(5):602-9. PubMed ID: 23777715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic dehalogenation of organohalide contaminants in the marine environment.
    Häggblom MM; Ahn YB; Fennell DE; Kerkhof LJ; Rhee SK
    Adv Appl Microbiol; 2003; 53():61-84. PubMed ID: 14696316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene.
    Nelson JL; Fung JM; Cadillo-Quiroz H; Cheng X; Zinder SH
    Environ Sci Technol; 2011 Aug; 45(16):6806-13. PubMed ID: 21732639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications.
    Ang TF; Maiangwa J; Salleh AB; Normi YM; Leow TC
    Molecules; 2018 May; 23(5):. PubMed ID: 29735886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic and microbial ecological insights into the impacts of micro- and nano- plastics on microbial reductive dehalogenation of organohalide pollutants.
    Liu J; Xu G; Zhao S; Chen C; Rogers MJ; He J
    J Hazard Mater; 2023 Apr; 448():130895. PubMed ID: 36758435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.