These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26773789)

  • 1. Three dimensional image-based simulation of ultrasonic wave propagation in polycrystalline metal using phase-field modeling.
    Nakahata K; Sugahara H; Barth M; Köhler B; Schubert F
    Ultrasonics; 2016 Apr; 67():18-29. PubMed ID: 26773789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description.
    Lhuillier PE; Chassignole B; Oudaa M; Kerhervé SO; Rupin F; Fouquet T
    Ultrasonics; 2017 Jul; 78():40-50. PubMed ID: 28324775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.
    Leckey CA; Rogge MD; Raymond Parker F
    Ultrasonics; 2014 Jan; 54(1):385-94. PubMed ID: 23769180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation and velocity of elastic waves in polycrystals with generally anisotropic grains: Analytic and numerical modeling.
    Sha G; Huang M; Lowe MJS; Rokhlin SI
    J Acoust Soc Am; 2020 Apr; 147(4):2442. PubMed ID: 32359302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.
    Zelenyak AM; Schorer N; Sause MGR
    Ultrasonics; 2018 Feb; 83():103-113. PubMed ID: 28676149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of ultrasonic attenuation within two- and three-dimensional polycrystalline media.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2020 Jan; 100():105980. PubMed ID: 31479969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of ultrasonic backscatter using three-dimensional finite element simulations.
    Liu Y; Van Pamel A; Nagy PB; Cawley P
    J Acoust Soc Am; 2019 Mar; 145(3):1584. PubMed ID: 31067955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains.
    Ryzy M; Grabec T; Sedlák P; Veres IA
    J Acoust Soc Am; 2018 Jan; 143(1):219. PubMed ID: 29390780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-D finite element simulation for ultrasonic propagation in tooth.
    Sun X; Witzel EA; Bian H; Kang S
    J Dent; 2008 Jul; 36(7):546-53. PubMed ID: 18514378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.
    Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S
    Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave localized finite-difference-time-domain modelling of scattering of elastic waves within a polycrystalline material.
    Shivaprasad S; Pandala A; Krishnamurthy CV; Balasubramaniam K
    J Acoust Soc Am; 2018 Dec; 144(6):3313. PubMed ID: 30599652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the propagation of ultrasonic waves in the interface region between two bonded elements.
    Delsanto PP; Hirsekorn S; Agostini V; Loparco R; Koka A
    Ultrasonics; 2002 May; 40(1-8):605-10. PubMed ID: 12160009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-dependent ultrasonic scattering in polycrystalline materials.
    Kube CM; Turner JA
    J Acoust Soc Am; 2016 Feb; 139(2):811-24. PubMed ID: 26936563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic wave propagation predictions for polycrystalline materials using three-dimensional synthetic microstructures: Phase velocity variations.
    Norouzian M; Turner JA
    J Acoust Soc Am; 2019 Apr; 145(4):2171. PubMed ID: 31046304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of ultrasonic wave propagation in anisotropic and attenuative solid materials.
    You Z; Lusk M; Ludwig R; Lord W
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):436-45. PubMed ID: 18267605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions.
    Van Pamel A; Brett CR; Huthwaite P; Lowe MJ
    J Acoust Soc Am; 2015 Oct; 138(4):2326-36. PubMed ID: 26520313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lamb wave propagation in monocrystalline silicon wafers.
    Fromme P; Pizzolato M; Robyr JL; Masserey B
    J Acoust Soc Am; 2018 Jan; 143(1):287. PubMed ID: 29390792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.
    Leckey CAC; Wheeler KR; Hafiychuk VN; Hafiychuk H; Timuçin DA
    Ultrasonics; 2018 Mar; 84():187-200. PubMed ID: 29154046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.