These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26773806)

  • 1. Cryptosporidium Infection Risk: Results of New Dose-Response Modeling.
    Messner MJ; Berger P
    Risk Anal; 2016 Oct; 36(10):1969-1982. PubMed ID: 26773806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive Bayesian microbial dose-response assessment based on suggested self-organization in primary illness response: Cryptosporidium parvum.
    Englehardt JD; Swartout J
    Risk Anal; 2006 Apr; 26(2):543-54. PubMed ID: 16573639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of Distributional Forms for the Assessment of Protozoan Pathogens Concentrations in Drinking-Water Sources.
    Sylvestre É; Prévost M; Smeets P; Medema G; Burnet JB; Cantin P; Villion M; Robert C; Dorner S
    Risk Anal; 2021 Aug; 41(8):1396-1412. PubMed ID: 33103818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive population dose-response assessment for Cryptosporidium parvum: infection endpoint.
    Englehardt JD; Swartout J
    J Toxicol Environ Health A; 2004 Apr 23-May 28; 67(8-10):651-66. PubMed ID: 15192860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of risk of infection due to Cryptosporidium parvum in drinking water.
    Masago Y; Katayama H; Hashimoto A; Hirata T; Ohgaki S
    Water Sci Technol; 2002; 46(11-12):319-24. PubMed ID: 12523772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virulence of geographically different Cryptosporidium parvum isolates in experimental animal model.
    Sayed FG; Hamza AI; Galal LA; Sayed DM; Gaber M
    Ann Parasitol; 2016 Oct; 62(3):221-32. PubMed ID: 27770762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ; Pintar KD; Fazil AM; Topp E
    Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a more accurate quantitative assessment of seasonal Cryptosporidium infection risks in surface waters using species and genotype information.
    Lapen DR; Schmidt PJ; Thomas JL; Edge TA; Flemming C; Keithlin J; Neumann N; Pollari F; Ruecker N; Simhon A; Topp E; Wilkes G; Pintar KDM
    Water Res; 2016 Nov; 105():625-637. PubMed ID: 27721171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and indirect QMRA of infectious Cryptosporidium oocysts in reclaimed water.
    Agulló-Barceló M; Casas-Mangas R; Lucena F
    J Water Health; 2012 Dec; 10(4):539-48. PubMed ID: 23165711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Generalized QMRA Beta-Poisson Dose-Response Model.
    Xie G; Roiko A; Stratton H; Lemckert C; Dunn PK; Mengersen K
    Risk Anal; 2016 Oct; 36(10):1948-1958. PubMed ID: 26849688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The infectivity of Cryptosporidium parvum in healthy volunteers.
    DuPont HL; Chappell CL; Sterling CR; Okhuysen PC; Rose JB; Jakubowski W
    N Engl J Med; 1995 Mar; 332(13):855-9. PubMed ID: 7870140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment for Cryptosporidium: a hierarchical Bayesian analysis of human dose response data.
    Messner MJ; Chappell CL; Okhuysen PC
    Water Res; 2001 Nov; 35(16):3934-40. PubMed ID: 12230176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional poisson--a simple dose-response model for human norovirus.
    Messner MJ; Berger P; Nappier SP
    Risk Anal; 2014 Oct; 34(10):1820-9. PubMed ID: 24724739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [New methods for the diagnosis of Cryptosporidium and Giardia].
    Cacciò SM
    Parassitologia; 2004 Jun; 46(1-2):151-5. PubMed ID: 15305706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative risk assessment of waterborne cryptosporidiosis in France using second-order Monte Carlo simulation.
    Pouillot R; Beaudeau P; Denis JB; Derouin F;
    Risk Anal; 2004 Feb; 24(1):1-17. PubMed ID: 15027996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstrating the Benefits of Predictive Bayesian Dose-Response Relationships Using Six Exposure Studies of Cryptosporidium parvum.
    Bloetscher F; Meeroff D; Long SC; Dudle JD
    Risk Anal; 2020 Nov; 40(11):2442-2461. PubMed ID: 32822077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a single dose methylprednisolone acetate immune suppression model using Cryptosporidium muris and Cryptosporidium parvum.
    Miller TA; Schaefer FW
    Vet Parasitol; 2006 Oct; 141(1-2):66-83. PubMed ID: 16757117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the infection risk of Giardia and Cryptosporidium in public drinking water delivered by surface water systems in Sao Paulo State, Brazil.
    Sato MI; Galvani AT; Padula JA; Nardocci AC; Lauretto Mde S; Razzolini MT; Hachich EM
    Sci Total Environ; 2013 Jan; 442():389-96. PubMed ID: 23178841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considering the risk of infection by cryptosporidium via consumption of municipally treated drinking water from a surface water source in a Southwestern Ontario community.
    Pintar KD; Fazil A; Pollari F; Waltner-Toews D; Charron DF; McEwen SA; Walton T
    Risk Anal; 2012 Jul; 32(7):1122-38. PubMed ID: 22443194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the log-Logistic Model to Dose Response Relation in Microbial Risk Assessment.
    Fujikawa H
    Shokuhin Eiseigaku Zasshi; 2021; 62(2):37-43. PubMed ID: 33883334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.