These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 26773833)
1. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Kar S; Gajewicz A; Roy K; Leszczynski J; Puzyn T Ecotoxicol Environ Saf; 2016 Apr; 126():238-244. PubMed ID: 26773833 [TBL] [Abstract][Full Text] [Related]
2. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896 [TBL] [Abstract][Full Text] [Related]
3. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Basant N; Gupta S Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981 [TBL] [Abstract][Full Text] [Related]
4. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010 [TBL] [Abstract][Full Text] [Related]
5. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542 [TBL] [Abstract][Full Text] [Related]
6. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Fjodorova N; Novic M; Gajewicz A; Rasulev B Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416 [TBL] [Abstract][Full Text] [Related]
7. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319 [TBL] [Abstract][Full Text] [Related]
8. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition. Holmes AM; Lim J; Studier H; Roberts MS Nanotoxicology; 2016 Dec; 10(10):1503-1514. PubMed ID: 27636544 [TBL] [Abstract][Full Text] [Related]
9. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851 [TBL] [Abstract][Full Text] [Related]
10. Biocompatibility of designed MicNo-ZnO particles: Cytotoxicity, genotoxicity and phototoxicity in human skin keratinocyte cells. Genç H; Barutca B; Koparal AT; Özöğüt U; Şahin Y; Suvacı E Toxicol In Vitro; 2018 Mar; 47():238-248. PubMed ID: 29223573 [TBL] [Abstract][Full Text] [Related]
11. Nano-QTTR development for interspecies aquatic toxicity of silver nanoparticles between daphnia and fish. Jung U; Lee B; Kim G; Shin HK; Kim KT Chemosphere; 2021 Nov; 283():131164. PubMed ID: 34144291 [TBL] [Abstract][Full Text] [Related]
12. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892 [TBL] [Abstract][Full Text] [Related]
13. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Jiang W; Mashayekhi H; Xing B Environ Pollut; 2009 May; 157(5):1619-25. PubMed ID: 19185963 [TBL] [Abstract][Full Text] [Related]
14. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to Roy J; Roy K Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631 [TBL] [Abstract][Full Text] [Related]
15. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Roy J; Roy K Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491 [TBL] [Abstract][Full Text] [Related]
16. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Kar S; Gajewicz A; Puzyn T; Roy K; Leszczynski J Ecotoxicol Environ Saf; 2014 Sep; 107():162-9. PubMed ID: 24949897 [TBL] [Abstract][Full Text] [Related]
17. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798 [TBL] [Abstract][Full Text] [Related]
18. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Hu X; Cook S; Wang P; Hwang HM Sci Total Environ; 2009 Apr; 407(8):3070-2. PubMed ID: 19215968 [TBL] [Abstract][Full Text] [Related]
19. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Baek YW; An YJ Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies. Kar S; Pathakoti K; Tchounwou PB; Leszczynska D; Leszczynski J Chemosphere; 2021 Feb; 264(Pt 1):128428. PubMed ID: 33022504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]