BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1446 related articles for article (PubMed ID: 26773874)

  • 1. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.
    Mailloux RJ; Craig Ayre D; Christian SL
    Redox Biol; 2016 Aug; 8():285-97. PubMed ID: 26928132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex.
    O'Brien M; Chalker J; Slade L; Gardiner D; Mailloux RJ
    Free Radic Biol Med; 2017 May; 106():302-314. PubMed ID: 28242228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein S-glutathionylation reactions as a global inhibitor of cell metabolism for the desensitization of hydrogen peroxide signals.
    Mailloux RJ
    Redox Biol; 2020 May; 32():101472. PubMed ID: 32171726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-optimized ROS balance: a unifying hypothesis.
    Aon MA; Cortassa S; O'Rourke B
    Biochim Biophys Acta; 2010; 1797(6-7):865-77. PubMed ID: 20175987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium in Drosophila Neuron Subtypes Using Redox-Sensitive Fluorophores and 3D Imaging.
    Buhlman LM; Keoseyan PP; Houlihan KL; Juba AN
    Methods Mol Biol; 2021; 2276():113-127. PubMed ID: 34060036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake.
    Gill RM; O'Brien M; Young A; Gardiner D; Mailloux RJ
    PLoS One; 2018; 13(2):e0192801. PubMed ID: 29444156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione redox state regulates mitochondrial reactive oxygen production.
    Shen D; Dalton TP; Nebert DW; Shertzer HG
    J Biol Chem; 2005 Jul; 280(27):25305-12. PubMed ID: 15883162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
    Mailloux RJ; McBride SL; Harper ME
    Trends Biochem Sci; 2013 Dec; 38(12):592-602. PubMed ID: 24120033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast
    Gergondey R; Garcia C; Marchand CH; Lemaire SD; Camadro JM; Auchère F
    Biochem J; 2017 Mar; 474(7):1175-1193. PubMed ID: 28167699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates.
    Garcia J; Han D; Sancheti H; Yap LP; Kaplowitz N; Cadenas E
    J Biol Chem; 2010 Dec; 285(51):39646-54. PubMed ID: 20937819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine Switches and the Regulation of Mitochondrial Bioenergetics and ROS Production.
    Mailloux RJ
    Adv Exp Med Biol; 2019; 1158():197-216. PubMed ID: 31452142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Mitochondria-Targeted Pharmaceuticals for the Treatment of Heart Disease.
    Mailloux RJ
    Curr Pharm Des; 2016; 22(31):4763-4779. PubMed ID: 27356774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.
    Heppner DE; Janssen-Heininger YMW; van der Vliet A
    Arch Biochem Biophys; 2017 Feb; 616():40-46. PubMed ID: 28126370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of the superoxide/hydrogen peroxide forming and quenching potential of mouse liver mitochondria.
    Slade L; Chalker J; Kuksal N; Young A; Gardiner D; Mailloux RJ
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1960-1969. PubMed ID: 28506882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Mitochondrial Hydrogen Peroxide Availability by Protein S-glutathionylation.
    Mailloux RJ; Grayson C; Koufos O
    Cells; 2022 Dec; 12(1):. PubMed ID: 36611901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic β-cells.
    Takahashi HK; Santos LR; Roma LP; Duprez J; Broca C; Wojtusciszyn A; Jonas JC
    Biochem J; 2014 Jun; 460(3):411-23. PubMed ID: 24678915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 73.