These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 26773937)
1. Mining frequent biological sequences based on bitmap without candidate sequence generation. Wang Q; Davis DN; Ren J Comput Biol Med; 2016 Feb; 69():152-7. PubMed ID: 26773937 [TBL] [Abstract][Full Text] [Related]
2. MpBsmi: A new algorithm for the recognition of continuous biological sequence pattern based on index structure. Li W; Ren J PLoS One; 2018; 13(4):e0195601. PubMed ID: 29684052 [TBL] [Abstract][Full Text] [Related]
3. Frequent patterns mining in multiple biological sequences. Chen L; Liu W Comput Biol Med; 2013 Oct; 43(10):1444-52. PubMed ID: 24034736 [TBL] [Abstract][Full Text] [Related]
7. Mining Contiguous Sequential Generators in Biological Sequences. Zhang J; Wang Y; Zhang C; Shi Y IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):855-867. PubMed ID: 26529774 [TBL] [Abstract][Full Text] [Related]
8. TrieAMD: a scalable and efficient apriori motif discovery approach. Al-Turaiki I; Badr G; Mathkour H Int J Data Min Bioinform; 2015; 13(1):13-30. PubMed ID: 26529905 [TBL] [Abstract][Full Text] [Related]
9. Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction. Liang Zhao ; Hoi SC; Li Z; Wong L; Nguyen H; Li J IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):7-16. PubMed ID: 26355502 [TBL] [Abstract][Full Text] [Related]
10. The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree. Mi X Comput Intell Neurosci; 2022; 2022():7022168. PubMed ID: 35634074 [TBL] [Abstract][Full Text] [Related]
11. On mining clinical pathway patterns from medical behaviors. Huang Z; Lu X; Duan H Artif Intell Med; 2012 Sep; 56(1):35-50. PubMed ID: 22809825 [TBL] [Abstract][Full Text] [Related]
13. NSAMD: A new approach to discover structured contiguous substrings in sequence datasets using Next-Symbol-Array. Pari A; Baraani A; Parseh S Comput Biol Chem; 2016 Oct; 64():384-395. PubMed ID: 27620380 [TBL] [Abstract][Full Text] [Related]
14. Mining and exploring care pathways from electronic medical records with visual analytics. Perer A; Wang F; Hu J J Biomed Inform; 2015 Aug; 56():369-78. PubMed ID: 26146159 [TBL] [Abstract][Full Text] [Related]
15. Mining of high utility-probability sequential patterns from uncertain databases. Zhang B; Lin JC; Fournier-Viger P; Li T PLoS One; 2017; 12(7):e0180931. PubMed ID: 28742847 [TBL] [Abstract][Full Text] [Related]
16. A node linkage approach for sequential pattern mining. Navarro O; Cumplido R; Villaseñor-Pineda L; Feregrino-Uribe C; Carrasco-Ochoa JA PLoS One; 2014; 9(6):e95418. PubMed ID: 24933123 [TBL] [Abstract][Full Text] [Related]
17. Efficient mining gapped sequential patterns for motifs in biological sequences. Liao V; Chen MS BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S7. PubMed ID: 24565366 [TBL] [Abstract][Full Text] [Related]
18. An iterative data mining approach for mining overlapping coexpression patterns in noisy gene expression data. Ma PC; Chan KC IEEE Trans Nanobioscience; 2009 Sep; 8(3):252-8. PubMed ID: 19605326 [TBL] [Abstract][Full Text] [Related]
19. SeqCompress: an algorithm for biological sequence compression. Sardaraz M; Tahir M; Ikram AA; Bajwa H Genomics; 2014 Oct; 104(4):225-8. PubMed ID: 25173568 [TBL] [Abstract][Full Text] [Related]
20. Incremental fuzzy mining of gene expression data for gene function prediction. Ma PC; Chan KC IEEE Trans Biomed Eng; 2011 May; 58(5):1246-52. PubMed ID: 20403777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]